A System for Video Surveillance and Monitoring
CMU VSAM Final Report *

Takeo Kanade, Robert T. Collins, Alan J. Lipton,
Hironobu Fujiyoshi, David Duggins, Yanghai Tsin,
David Tolliver, Nobuyoshi Enomoto and Osamu Hasegawa

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
E-MAIL: {kanade,rcollins,ajl} @cs.cmu.edu
HOMEPAGE: http://www.cs.cmu.edu/™ vsam

Peter Burt and Lambert Wixson
The Sarnoff Corporation, Princeton, NJ
E-MAIL: {pburt,lwixson} @sarnoff.com

Abstract

Under the three-year Video Surveillance and Monitoring (VSAM) project, the Robotics In-
stitute at Carnegie Mellon University (CMU) and the Sarnoff Corporation have developed a
system for autonomous Video Surveillance and Monitoring. The technical approach uses mul-
tiple, cooperative video sensors to provide continuous coverage of people and vehicles in a
cluttered environment. This final report presents an overview of the system, and of the tech-
nical accomplishments that have been achieved. Details can be found in a set of previously
published papers that together comprise Appendix A.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

*This work was funded by the DARPA Image Understanding under contract DAABQ7-97-C-J031, and by the
Office of Naval Research under grant N00014-99-1-0646.

DTIC QUALITY INS’PECTED 2

Robotics Institute, CMU -1- VSAM Final Report




1 Introduction

The thrust of CMU research under the DARPA Video Surveillance and Monitoring (VSAM)
project is cooperative multi-sensor surveillance to support battlefield awareness [18]. Under our
VSAM Integrated Feasibility Demonstration (IFD) contract, we have developed automated video
understanding technology that enables a single human operator to monitor activities over a com-
plex area using a distributed network of active video sensors. The goal is to automatically collect
and disseminate real-time information from the battlefield to improve the situational awareness of
commanders and staff. Other military and federal law enforcement applications include providing
perimeter security for troops, monitoring peace treaties or refugee movements from unmanned air
vehicles, providing security for embassies or airports, and staking out suspected drug or terrorist
hide-outs by collecting time-stamped pictures of everyone entering and exiting the building.

Automated video surveillance is an important research area in the commercial sector as well.
Technology has reached a stage where mounting cameras to capture video imagery is cheap, but
finding available human resources to sit and watch that imagery is expensive. Surveillance cameras
are already prevalent in commercial establishments, with camera output being recorded to tapes
that are either rewritten periodically or stored in video archives. After a crime occurs — a store
is robbed or a car is stolen — investigators can go back after the fact to see what happened, but of
course by then it is too late. What is needed is continuous 24-hour monitoring and analysis of video
surveillance data to alert security officers to a burglary in progress, or to a suspicious individual
loitering in the parking lot, while options are still open for avoiding the crime.

Keeping track of people, vehicles, and their interactions in an urban or battlefield environment
is a difficult task. The role of VSAM video understanding technology in achieving this goal is to
automatically “parse” people and vehicles from raw video, determine their geolocations, and insert
them into a dynamic scene visualization. We have developed robust routines for detecting and
tracking moving objects. Detected objects are classified into semantic categories such as human,
human group, car, and truck using shape and color analysis, and these labels are used to improve
tracking using temporal consistency constraints. Further classification of human activity, such as
walking and running, has also been achieved. Geolocations of labeled entities are determined from
their image coordinates using either wide-baseline stereo from two or more overlapping camera
views, or intersection of viewing rays with a terrain model from monocular views. These computed
locations feed into a higher level tracking module that tasks multiple sensors with variable pan, tilt
and zoom to cooperatively and continuously track an object through the scene. All resulting object
hypotheses from all sensors are transmitted as symbolic data packets back to a central operator
control unit, where they are displayed on a graphical user interface to give a broad overview of
scene activities. These technologies have been demonstrated througﬁ ia serié’s’“f‘ '%\"ﬂyﬁiﬁiﬁﬁi
using a testbed system developed on the urban campus of CMU.". it iy

ia TS EPCIL SO E O

This is the final report on the three-year VSAM IFD research program The emphas1s is on
recent results that have not yet been published. Older work that has already appeared in print is
briefly summarized, and the relevant technical papers are included in the Appendix. This report is

Robotics Institute, CMU -2- VSAM Final Report




organized as follows. Section 2 contains a description of the VSAM IFD testbed system, developed
as a testing ground for new video surveillance research. Section 3 describes the basic video un-
derstanding algorithms that have been demonstrated, including moving object detection, tracking,
classification, and simple activity recognition. Section 4 discusses the use of geospatial site mod-
els to aid video surveillance processing, including calibrating a network of sensors with respect
to the model coordinate system, computation of 3D geolocation estimates, and graphical display
of object hypotheses within a distributed simulation. Section 5 discusses coordination of multi-
ple cameras to achieve cooperative object tracking. Section 6 briefly lists the milestones achieved
through three VSAM demos that were performed in Pittsburgh, the first at the rural Bushy Run
site, and the second and third held on the urban CMU campus, and concludes with plans for future
research. The appendix contains published technical papers from the CMU VSAM research group.

2 VSAM Testbed System

We have built a VSAM testbed system to demonstrate how automated video understanding tech-
nology described in the following sections can be combined into a coherent surveillance system
that enables a single human operator to monitor a wide area. The testbed system consists of multi-
ple sensors distributed across the campus of CMU, tied to a control room (Figure 1a) located in the
Planetary Robotics Building (PRB). The testbed consists of a central operator control unit (OCU)

(b)

Figure 1: a) Control room of the VSAM testbed system on the campus of Carnegie Mellon Uni-
versity. b) Close-up of the main rack.

which receives video and Ethernet data from multiple remote sensor processing units (SPUs) (see
Figure 2). The OCU is responsible for integrating symbolic object trajectory information accu-
mulated by each of the SPUs together with a 3D geometric site model, and presenting the results
to the user on a map-based graphical user interface (GUI). Each logical component of the testbed
system architecture is described briefly below.

Robotics Institute, CMU -3- VSAM Final Report




CMUPA CMUPA
<« GUI
<> OoCuU
DIsS
S P U s Site Sensor —> VI S
Model Fusion

Figure 2: Schematic overview of the VSAM testbed system.
2.1 Sensor Processing Units (SPUs)

The SPU acts as an intelligent filter between a camera and the VSAM network. Its function is to
analyze video imagery for the presence of significant entities or events, and to transmit that infor-
mation symbolically to the OCU. This arrangement allows for many different sensor modalities
to be seamlessly integrated into the system. Furthermore, performing as much video processing
as possible on the SPU reduces the bandwidth requirements of the VSAM network. Full video
signals do not need to be transmitted; only symbolic data extracted from video signals.

The VSAM testbed can handle a wide variety of sensor and SPU types (Figure 3). The list of
IFD sensor types includes: color CCD cameras with active pan, tilt and zoom control; fixed field
of view monochromatic low-light cameras; and thermal sensors. Logically, each SPU combines a
camera with a local computer that processes the incoming video. However, for convenience, most
video signals in the testbed system are sent via fiber optic cable to computers located in a rack
in the control room (Figure 1b). The exceptions are SPU platforms that move: a van-mounted
relocatable SPU; an SUO portable SPU; and an airborne SPU. Computing power for these SPUs is
on-board, with results being sent to the OCU over relatively low-bandwidth wireless Ethernet links.
In addition to the IFD in-house SPUs, two Focussed Research Effort (FRE) sensor packages have
been integrated into the system: a Columbia-Lehigh CycloVision ParaCamera with a hemispher-
ical field of view; and a Texas Instruments indoor surveillance system. By using a pre-specified
communication protocol (see Section 2.4), these FRE systems were able to directly interface with
the VSAM network. Indeed, within the logical system architecture, all SPUs are treated identi-
cally. The only difference is at the hardware level where different physical connections (e.g. cable
or wireless Ethernet) may be required to connect to the OCU.

The relocatable van and airborne SPU warrant further discussion. The relocatable van SPU
consists of a sensor and pan-tilt head mounted on a small tripod that can be placed on the vehicle
roof when stationary. All video processing is performed on-board the vehicle, and results from
object detection and tracking are assembled into symbolic data packets and transmitted back to
the operator control workstation using a radio Ethernet connection. The major research issue
involved in demonstrating the redeployable van unit involves how to rapidly calibrate sensor pose
after redeployment, so that object detection and tracking results can be integrated into the VSAM
network (via computation of geolocation) for display at the operator control console.

Robotics Institute, CMU -4 VSAM Final Report




Figure 3: Many types of sensors and SPUs have been incorporated into the VSAM IFD testbed
system: a) color PTZ; b) thermal; c) relocatable van; d) airborne. In addition, two FRE sensors
have been successfully integrated: e) Columbia-Lehigh omnicamera; f) Texas Instruments indoor
activity monitoring system.

Robotics Institute, CMU -5- VSAM Final Report




The airborne sensor and computation packages are mounted on a Britten-Norman Islander
twin-engine aircraft operated by the U.S. Army Night Vision and Electronic Sensors Directorate.
The Islander is equipped with a FLIR Systems Ultra-3000 turret that has two degrees of freedom
(pan/tilt), a Global Positioning System (GPS) for measuring position, and an Attitude Heading
Reference System (AHRS) for measuring orientation. The continual self-motion of the aircraft
introduces challenging video understanding issues. For this reason, video processing is performed
using the Sarnoff PVT-200, a specially designed video processing engine.

2.2 Operator Control Unit (OCU)

Figure 4 shows the functional architecture of the VSAM OCU. It accepts video processing results
from each of the SPUs and integrates the information with a site model and a database of known
objects to infer activities that are of interest to the user. This data is sent to the GUI and other
visualization tools as output from the system.

OCU FUNCTIONAL MODEL

site model -
DB

site
ode

footprint

activity
modeling
(HVIL,
riot monitoring
car park monitorin
loiterer detection
tracking)

dynamic ) SPU
target DB idle_
B tigger behaviou
definition Y
sensor
- control [**

(handoff,
multi-tasking)

tracking
recognition
classification
triggers
geolocation

Figure 4: Functional architecture of the VSAM OCU.

One key piece of system functionality provided by the OCU is sensor arbitration. Care must
be taken to ensure that an outdoor surveillance system does not underutilize its limited sensor
assets. Sensors must be allocated to surveillance tasks in such a way that all user-specified tasks
get performed, and, if enough sensors are present, multiple sensors are assigned to track important
objects. At any given time, the OCU maintains a list of known objects and sensor parameters, as
well as a set of “tasks” that may need attention. These tasks are explicitly indicated by the user
through the GUI, and may include specific objects to be tracked, specific regions to be watched,
or specific events to be detected (such as a person loitering near a particular doorway). Sensor

Robotics Institute, CMU -6-— VSAM Final Report




arbitration is performed by an arbitration cost function. The arbitration function determines the
cost of assigning each of the SPUs to each of the tasks. These costs are based on the priority of
the tasks, the load on the SPU, and visibility of the objects from a particular sensor. The system
performs a greedy optimization of the cost to determine the best combination of SPU tasking to
maximize overall system performance requirements.

The OCU also contains a site model representing VSAM-relevant information about the area
being monitored. The site model representation is optimized to efficiently support the following
VSAM capabilities:

e object geolocation via intersection of viewing rays with the terrain.

e visibility analysis (predicting what portions of the scene are visible from what sensors) so
that sensors can be efficiently tasked.

e specification of the geometric location and extent of relevant scene features. For example,
we might directly task a sensor to monitor the door of a building, or to look for vehicles
passing through a particular intersection.

2.3 Graphical User Interface (GUI)

(a) (b)

Figure 5: a) Operator console located in the control room. Also shown is a laptop-based portable
operator console. b) Close-up view of the visualization node display screen.

One of the technical goals of the VSAM project is to demonstrate that a single human operator
can effectively monitor a significant area of interest. Keeping track of multiple people, vehicles,
and their interactions, within a complex urban environment is a difficult task. The user obviously
shouldn’t be looking at two dozen screens showing raw video output. That amount of sensory
overload virtually guarantees that information will be ignored, and requires a prohibitive amount
of transmission bandwidth. Our approach is to provide an interactive, graphical user interface
(GUI) that uses VSAM technology to automatically place dynamic agents representing people and

Robotics Institute, CMU -7- VSAM Final Report




vehicles into a synthetic view of the environment (Figure 5). This approach has the benefit that
visualization of scene events is no longer tied to the original resolution and viewpoint of a single
video sensor. The GUI currently consists of a map of the area, overlaid with all object locations,
sensor platform locations, and sensor fields of view (Figure 5b). In addition, a low-bandwidth,
compressed video stream from one of the sensors can be selected for real-time display.

The GUI is also used for sensor suite tasking. Through this interface, the operator can task
individual sensor units, as well as the entire testbed sensor suite, to perform surveillance operations
such as generating a quick summary of all object activities in the area. The lower left corner of
the control window contains a selection of controls organized as tabbed selections. This allows the
user to move fluidly between different controls corresponding to the entity types Objects, Sensors,
and Regions of Interest.

e Object Controls. Track directs the system to begin actively tracking the current object.
Stop Tracking terminates all active tracking tasks in the system. Trajectory displays the
trajectory of selected objects. Error displays geolocation error bounds on the locations and
trajectories of selected objects.

e Sensor Controls. Show FOV displays sensor fields of view on the map, otherwise only a
position marker is drawn. Move triggers an interaction allowing the user to control the pan
and tilt angle of the sensor. Request Imagery requests either a continuous stream or single
image from the currently selected sensor, and Stop Imagery terminates the current imagery
stream.

e ROI controls This panel contains all the controls associated with Regions of Interest (ROIs)
in the system. ROIs are tasks that focus sensor resources at specific areas in the session
space. Create triggers the creation of a ROI, specified interactively by the user as a polygon
of boundary points. The user also selects from a set of object types (e.g. human, vehicle)
that will trigger events in this ROI, and from a set of event types (e.g. enter, pass through,
stop in) that are considered to be trigger events in the ROL

24 Communication

The nominal architecture for the VSAM network allows multiple OCUs to be linked together, each
controlling multiple SPUs (Figure 6). Each OCU supports exactly one GUI through which all user
related command and control information is passed. Data dissemination is not limited to a single
user interface, however, but is also accessible through a series of visualization nodes (VIS).

There are two independent communication protocols and packet structures supported in this
architecture: the Carnegie Mellon University Packet Architecture (CMUPA) and the Distributed
Interactive Simulation (DIS) protocols. The CMUPA is designed to be a low bandwidth, highly
flexible architecture in which relevant VSAM information can be compactly packaged without

Robotics Institute, CMU -8- VSAM Final Report




Figure 6: A nominal architecture for expandable VSAM networks.

bitmask
i 1

Sensor Imagery

block block

Sensol
block

¥ ¥

Event ROI
ROl
block
Event
block

Figure 7: CMUPA packet structure. A bitmask in the header describes which sections are present.
Within each section, multiple data blocks can be present. Within each data block, bitmasks describe

what information is present.

redundant overhead. The concept of the CMUPA packet architecture is a hierarchical decompo-
sition. There are six data sections that can be encoded into a packet: command; sensor; image;
object; event; and region of interest. A short packet header section describes which of these six
sections are present in the packet. Within each section it is possible to represent multiple instances
of that type of data, with each instance potentially containing a different layout of information.
At each level, short bitmasks are used to describe the contents of the various blocks within the
packets, keeping wasted space to a minimum. All communication between SPUs, OCUs and
GUIs is CMUPA compatible. The CMUPA protocol specification document is accessible from
http://www.cs.cmu.edu/~vsam.

VIS nodes are designed to distribute the output of the VSAM network to where it is needed.
They provide symbolic representations of detected activities overlaid on maps or imagery. Infor-
mation flow to VIS nodes is unidirectional, originating from an OCU. All of this communication
uses the DIS protocol, which is described in detail in [16]. An important benefit to keeping VIS
nodes DIS compatible is that it allows us to easily interface with synthetic environment visualiza-
tion tools such as ModSAF and ModStealth (Section 4.4).

Robotics Institute, CMU -9- VSAM Final Report




2.5 Current Testbed Infrastructure

This section describes the VSAM testbed on the campus of Carnegie Mellon University, as of Fall
1999 (see Figure 8). The VSAM infrastructure consists of 14 cameras distributed throughout cam-
pus. All cameras are connected to the VSAM Operator Control Room in the Planetary Robotics
Building (PRB): ten are connected via fiber optic lines, three on PRB are wired directly to the
SPU computers, and one is a portable Small Unit Operations (SUO) unit connected via wireless
Ethernet to the VSAM OCU. The work done for VSAM 99 concentrated on increasing the density
of sensors in the Wean/PRB area. The overlapping fields of view (FOVs) in this area of campus
enable us to conduct experiments in wide baseline stereo, object fusion, sensor cuing and sensor
handoff.

€
=

onochrome

Figure 8: Placement of color and monochrome cameras in current VSAM testbed system. Not
shown are two additional cameras, a FLIR and the SUO portable system, which are moved to
different places as needed.

The backbone of the CMU campus VSAM system consists of six Sony EVI-370 color zoom
cameras installed on PRB, Smith Hall, Newell-Simon Hall, Wean Hall, Roberts Hall, and Porter
Hall. Five of these units are mounted on Directed Perception pan/tilt heads. The most recent
camera, on Newell-Simon, is mounted on a Sagebrush Technologies pan/tilt head. This is a more
rugged outdoor mount being evaluated for better performance specifications and longer term usage.
Two stationary fixed-FOV color cameras are mounted on the peak of PRB, on either side of the

Robotics Institute, CMU —-10- VSAM Final Report




pan/tilt/zoom color camera located there. These PRB “left” and “right” sensors were added to
facilitate work on activity analysis, classification, and sensor cuing. Three stationary fixed-FOV
monochrome cameras are mounted on the roof of Wean Hall in close proximity to one of the
pan/tilt/zoom color cameras. These are connected to the Operator Control Room over a single
multimode fiber using a video multiplexor. The monochrome cameras have a vertical resolution
of 570 TV lines and perform fairly well at night with the available street lighting. A mounting
bracket has also been installed next to these cameras for the temporary installation of a Raytheon
NightSight thermal (FLIR) sensor. A fourth stationary fixed FOV monochrome camera is mounted
on PRB pointing at the back stairwell. A SUO portable unit was built to allow further software
development and research at CMU in support of the SUO program. This unit consists of the same
hardware as the SPUs that were delivered to Fort Benning, Georgia in November, 1999.

The Operator Control Room in PRB houses the SPU, OCU, GUI and development work-
stations — nineteen computers in total. The four most recent SPUs are Pentium III 550 MHz
computers. Dagwood, a single “compound SPU”, is a quad Xeon 550 MHz processor computer,
purchased to conduct research on classification, activity analysis, and digitization of three simulta-
neous video streams. Also included in this list of machines is a Silicon Graphics Origin 200, used
to develop video database storage and retrieval algorithms as well as designing user interfaces for
handling VSAM video data.

Two auto tracking Leica theodolites (TPS1100) are installed on the corner of PRB, and are
hardwired to a data processing computer linked to the VSAM OCU. This system allows us to do
real-time automatic tracking of objects to obtain ground truth for evaluating the VSAM geolocation
and sensor fusion algorithms. This data can be displayed in real-time on the VSAM GUL

An Office of Naval Research DURIP grant provided funds for two Raytheon NightSight ther-
mal sensors, the Quad Xeon processor computer, the Origin 200, an SGI Infinite Reality Engine
and the Leica theodolite surveying systems.

3 Video Understanding Technologies

Keeping track of people, vehicles, and their interactions in a complex environment is a difficult
task. The role of VSAM video understanding technology in achieving this goal is to automatically
“parse” people and vehicles from raw video, determine their geolocations, and automatically insert
them into a dynamic scene visualization. We have developed robust routines for detecting moving
objects and tracking them through a video sequence using a combination of temporal differencing
and template tracking. Detected objects are classified into semantic categories such as human,
human group, car, and truck using shape and color analysis, and these labels are used to improve
tracking using temporal consistency constraints. Further classification of human activity, such as
walking and running, has also been achieved. Geolocations of labeled entities are determined from
their image coordinates using either wide-baseline stereo from two or more overlapping camera
views, or intersection of viewing rays with a terrain model from monocular views. The computed

Robotics Institute, CMU —11- VSAM Final Report




geolocations are used to provide higher-level tracking capabilities, such as tasking multiple sensors
with variable pan, tilt and zoom to cooperatively track an object through the scene. Results are
displayed to the user in real-time on the GUI, and are also archived in web-based object/event
database.

3.1 Moving Object Detection

Detection of moving objects in video streams is known to be a significant, and difficult, research
problem [27]. Aside from the intrinsic usefulness of being able to segment video streams into
moving and background components, detecting moving blobs provides a focus of attention for
recognition, classification, and activity analysis, making these later processes more efficient since
only “moving” pixels need be considered.

There are three conventional approaches to moving object detection: temporal differencing
[1]; background subtraction [14, 30]; and optical flow (see [4] for an excellent discussion). Tem-
poral differencing is very adaptive to dynamic environments, but generally does a poor job of
extracting all relevant feature pixels. Background subtraction provides the most complete feature
data, but is extremely sensitive to dynamic scene changes due to lighting and extraneous events.
Optical flow can be used to detect independently moving objects in the presence of camera mo-
tion; however, most optical flow computation methods are computationally complex, and cannot
be applied to full-frame video streams in real-time without specialized hardware.

Under the VSAM program, CMU has developed and implemented three methods for mov-
ing object detection on the VSAM testbed. The first is a combination of adaptive background
subtraction and three-frame differencing (Section 3.1.1). This hybrid algorithm is very fast, and
surprisingly effective — indeed, it is the primary algorithm used by the majority of the SPUs in
the VSAM system. In addition, two new prototype algorithms have been developed to address
shortcomings of this standard approach. First, a mechanism for maintaining temporal object layers
is developed to allow greater disambiguation of moving objects that stop for a while, are occluded
by other objects, and that then resume motion (Section 3.1.2). One limitation that affects both
this method and the standard algorithm is that they only work for static cameras, or in a ’step-
and-stare” mode for pan-tilt cameras. To overcome this limitation, a second extension has been
developed to allow background subtraction from a continuously panning and tilting camera (Sec-
tion 3.1.3). Through clever accumulation of image evidence, this algorithm can be implemented
in real-time on a conventional PC platform. A fourth approach to moving object detection from
a moving airborne platform has also been developed, under a subcontract to the Sarnoff Corpora-
tion. This approach is based on image stabilization using special video processing hardware. It is
described later, in Section 3.6.

Robotics Institute, CMU -12 - VSAM Final Report




Long-term
parked car

Car moves

ofhy ey

:
"Hole" left in Car moves lJ‘I—ﬁU
background model Detection
(a) (b)

Figure 9: problems with standard MTD algorithms. (a) Background subtraction leaves “holes”
when stationary objects move. (b) Frame differencing does not detect the entire object

3.1.1 A Hybrid Algorithm for Moving Object Detection

We have developed a hybrid algorithm for detecting moving objects, by combining an adaptive
background subtraction technique[19] with a three-frame differencing algorithm. As discussed in
[27], the major drawback of adaptive background subtraction is that it makes no allowances for
stationary objects in the scene that start to move. Although these are usually detected, they leave
behind “holes” where the newly exposed background imagery differs from the known background
model (see Figure 9a). While the background model eventually adapts to these “holes”, they gen-
erate false alarms for a short period of time. Frame differencing is not subject to this phenomenon,
however, it is generally not an effective method for extracting the entire shape of a moving object
(Figure 9b). To overcome these problems, we have combined the two methods. A three-frame dif-
ferencing operation is performed to determine regions of legitimate motion, followed by adaptive
background subtraction to extract the entire moving region.

Consider a video stream from a stationary (or stabilized) camera. Let I,(x) represent the
intensity value at pixel position x, at time ¢ = n. The three-frame differencing rule suggests that
a pixel is legitimately moving if its intensity has changed significantly between both the current
image and the last frame, and the current image and the next-to-last frame. That is, a pixel x is
moving if

(Ha(x) = i1 (0)] > Ta(x) ) and (|In(x) = Tn-2(x)| > Tn(x) )

where T;,(x) is a threshold describing a statistically significant intensity change at pixel position x
(described below). The main problem with frame differencing is that pixels interior to an object
with uniform intensity aren’t included in the set of “moving” pixels. However, after clustering
moving pixels into a connected region, interior pixels can be filled in by applying adaptive back-
ground subtraction to extract all of the “moving” pixels within the region’s bounding box R. Let
B, (x) represent the current background intensity value at pixel x, learned by observation over time.
Then the blob b, can be filled out by taking all the pixels in R that are significantly different from
the background model B,,. That is

by = {x: |I,(x) — Bu(x)| > T,(x), x € R}

Robotics Institute, CMU - 13- VSAM Final Report




Both the background model B,(x) and the difference threshold T;,(x) are statistical properties
of the pixel intensities observed from the sequence of images {I;(x)} for k < n. Bo(x) is initially
set to the first image, Bo(x) = Ip(x), and Tp(x) is initially set to some pre-determined, non-zero
value. B(x) and 7'(x) are then updated over time as:

By (x) = o B,(x) + (1 —0a) I,(x), xisnon-moving
W Z N Balx), x is moving

Tyor(x) = o Tn(x) + (1—a) (5 X |I(x) — Bu(x)|), xis non-moving
W E (), x is moving

where o is a time constant that specifies how fast new information supplants old observations.
Note that each value is only changed for pixels that are determined to be non-moving, i.e. part of
the stationary background. If each non-moving pixel position is considered as a time series, B, (x)
is analogous to a local temporal average of intensity values, and T;,(x) is analogous to 5 times the
local temporal standard deviation of intensity, both computed using an infinite impulse response
(IIR) filter. Figure 10 shows a result of this detection algorithm for one frame.

A

(b)

Figure 10: Result of the detection algorithm. (a) Original image. (b) Detected motion regions.

3.1.2 Temporal Layers for Adaptive Background Subtraction

A robust detection system should be able to recognize when objects have stopped and even dis-
ambiguate overlapping objects — functions usually not possible with traditional motion detection
algorithms. An important aspect of this work derives from the observation that legitimately moving
objects in a scene tend to cause much faster transitions than changes due to lighting, meteorolog-
ical, and diurnal effects. This section describes a novel approach to object detection based on
layered adaptive background subtraction.

Robotics Institute, CMU -14 - VSAM Final Report




The Detection Algorithm

Layered detection is based on two processes: pixel analysis and region analysis. The purpose of
pixel analysis is to determine whether a pixel is stationary or transient by observing its intensity
value over time. Region analysis deals with the agglomeration of groups of pixels into moving
regions and stopped regions. Figure 11 graphically depicts the process. By observing the intensity
transitions of a pixel, different intensity layers, connected by transient periods, can be postulated.

pixel

W
region

Sationary : Background

time

Figure 11: The concept — combining pixel statistics with region analysis to provide a layered
approach to motion detection.

video stream ‘ pixe! analysis region analysis
motion
Time R .
=" Dliff. . fransient regions | moving target
s M) Spatio-
. s temporal
g - Pixel Analysis
® ( 5 } X6 stopped target
5 sHth) Diff. pped targ
& A
E H
- 1(1-2k)
‘B(t-k)
background ° g
25
§ 5 Layer management
B2
Creation
= Ordering
Jayer images Deletion

Figure 12: Architecture of the detection process. Temporal analysis is used on a per pixel basis
to determine whether pixels are transient or stationary. Transient pixels are clustered into groups
and assigned to spatio-temporal layers. A layer management process keeps track of the various

background layers.

Figure 12 shows the architecture of the detection processes. A key element of this algorithm is
that it needs to observe the behavior of a pixel for some time before determining if that pixel is un-
dergoing a transition. It has been observed that a pixel’s intensity value displays three characteristic
profiles depending on what is occurring in the scene at that pixel location

e A legitimate object moving through the pixel displays a profile that exhibits a step change

Robotics Institute, CMU —15- VSAM Final Report




-
P
-

-t -t -t

Human moves through pixel Human stops on pixel Ambient illumination ch ]

(@) (b) ()

Figure 13: Characteristic pixel intensity profiles for common events. Moving objects passing
through a pixel cause an intensity profile step change, followed by a period of instability. If the
object passes through the pixel (a), the intensity returns to normal. If the object stops (b), the
intensity settles to a new value. Variations in ambient lighting (c) exhibit smooth intensity changes
with no large steps.

in intensity, followed by a period of instability, then another step back to the original back-
ground intensity. Figure 13(a) shows this profile.

¢ A legitimate object moving through the pixel and stopping displays a profile that exhibits a
step change in intensity, followed by a period of instability, then it settles to a new intensity
as the object stops. Figure 13(b) shows this profile.

e Changes in intensity caused by lighting or meteorological effects tend to be smooth changes
that don’t exhibit large steps. Figure 13(c) shows this profile.

To capture the nature of changes in pixel intensity profiles, two factors are important: the exis-
tence of a significant step change in intensity, and the intensity value to which the profile stabilizes
after passing through a period of instability. To interpret the meaning of a step change (e.g. ob-
ject passing through, stopping at, or leaving the pixel), we need to observe the intensity curve
re-stabilizing after the step change. This introduces a time-delay into the process. In particular,
current decisions are made about pixel events k frames in the past. In our implementation k is set
to correspond to one second of video.

Let I; be some pixel’s intensity at a time ¢ occurring k frames in the past. Two functions
are computed: a motion trigger T just prior to the frame of interest ¢, and a stability measure S
computed over the k frames from time ¢ to the present. The motion trigger is simply the maximum
absolute difference between the pixel’s intensity Z and its value in the previous five frames

T = max {|I, — I,_y|,Vje[1,5]}

Robotics Institute, CMU -16 - VSAM Final Report




The stability measure is the variance of the intensity profile from time 7 to the present:

k k
kY Loey® = (X Lorp)
=0 =0

S=
k(k—1)
At this point a transience map M can be defined for each pixel, taking three possible values: back-
ground=0; transient=1 and stationary=2.

if ((M = stationary or background) AND (T > Threshold))
M = transient
else {
if ((M = transient) AND (S < Threshold)) ({
if (stabilized intensity value = background intensity)

M = background
else
M = stationary

Non-background pixels in the transience map M are clustered into regions R; using a nearest neigh-
bor spatial filter with clustering radius r,. This process is similar to performing a connected com-
ponents segmentation, however gaps up to a distance of 7. pixels can be tolerated within a compo-
nent. Choice of r. depends upon the scale of the objects being tracked. Each spatial region R is
then analyzed according to the following algorithm:

if (R = transient) { %all pixels in R are labeled as transient
R -> moving object

elseif (R = stationary) { %all pixels in R are labeled as stationary
Sremove all pixels already assigned to any layer
R=R - (L(0) + L(1) + .. + L(3))
$if anything is left, make a new layer out of it
if (R != 0) {
make new layer L(j+1) = R
R -> stopped object
}
else { %R contains a mixture of transient and stationary pixels
perform spatial clustering on R - (L(0) + L(1) + .. + L(3J)
for each region SR produced by that spatial clustering
if (SR = transient) {
SR -> moving object

Robotics Institute, CMU —17- VSAM Final Report




}

if (SR = stationary) ({
make new layer L(j+1) = SR
SR -> stopped object

}

if (SR = (stationary + transient)) ({
SR -> moving object

Regions that consist of stationary pixels are added as a layer over the background. A layer manage-
ment process is used to determine when stopped objects resume motion or are occluded by other
moving or stationary objects. Stationary layered regions and the scene background B are updated
by an IIR filter, as described in the last section, to accommodate slow lighting changes and noise
in the imagery, as well as to compute statistically significant threshold values.

Detection Results

Figure 14 shows an example of the analysis that occurs at a single pixel. The video sequence
contains the following activities at the pixel:

A vehicle drives through the pixel and stops

A second vehicle occludes the first and stops

A person, getting out of the second vehicle, occludes the pixel

The same person, returning to the vehicle, occludes the pixel again

The second car drives away

AN T o

The first car drives away

As can be seen, each of these steps is clearly visible in the pixel’s intensity profile, and the algo-
rithm correctly identifies the layers that accumulate.

Figure 15 shows the output of the region-level layered detection algorithm. The detected
regions are shown surrounded by bounding boxes — note that all three overlapping objects are
independently detected. Each stopped car is depicted as a temporary background layer, and the
person is determined to be a moving foreground region overlayed on them. The pixels belonging
to each car and to the person are well disambiguated.

Robotics Institute, CMU - 18- VSAM Final Report




200

Intensity

0 L s

50 100
transient : {D

stationary : 'L Background Layer t

60

20
0 shil

Variance (1)
]
T

120

80

40

Trigger 7(t)

L

0 50 100 250 300 . 350 400
Frame

Figure 14: Example pixel analysis of the scene shown in figure 15. A car drives in and stops. Then
a second car stops in front of the first. A person gets out and then returns again. The second car
drives away, followed shortly by the first car.

ﬂ, m Layer 1 —» stopped
& m Layer 2 —» stopped

—» moving

o)

Figure 15: Detection result. Here one stopped vehicle partially occludes another, while a person in
moving in the foreground. Displayed on the right are the layers corresponding to the stopped vehi-
cles and the moving foreground person, together with bitmaps denoting which pixels are occluded
in each layer.

Robotics Institute, CMU -19- VSAM Final Report




3.1.3 Background Subtraction from a Continuously Panning Camera

Pan-tilt camera platforms can maximize the virtual field of view of a single camera without the loss
of resolution that accompanies a wide-angle lens. They also allow for active tracking of an object
of interest through the scene. However, moving object detection using background subtraction is
not directly applicable to a camera that is panning and tilting, since all image pixels are moving .
It is well known that camera pan/tilt is approximately described as a pure camera rotation, where
apparent motion of pixels depends only on the camera motion, and not on the 3D scene structure.
' In this respect, the problems associated with a panning and tilting camera are much easier than if
the camera were mounted on a moving vehicle traveling through the scene.

We ultimately seek to generalize the use of adaptive background subtraction to handle panning
and tilting cameras, by representing a full spherical background model. There are two algorithmic
tasks that need to be performed: 1) background subtraction: as the camera pans and tilts, different
parts of the full spherical model are retrieved and subtracted to reveal the independently moving
objects. 2) background updating: as the camera revisits various parts of the full field of view,
the background intensity statistics in those areas must be updated. Both of these tasks depend
on knowing the precise pointing direction of the sensor, or in other words, the mapping between
pixels in the current image and corresponding pixels in the background model. Although we can
read the current pan and tilt angles from encoders on the pan-tilt mechanism, this information
is only reliable when the camera is stationary (due to unpredictable communication delays, we
can not precisely know the pan-tilt readings for a given image while the camera is moving). Our
solution to the problem is to register each image to the current spherical background model, thereby
inferring the correct pan-tilt values, even while the camera is rotating.

Figure 16: Set of background reference images for a panning and tilting camera.

Maintaining a background model larger than the camera’s physical field of view entails repre-
senting the scene as a collection of images. In our case, an initial background model is constructed
by methodically collecting a set of images with known pan-tilt settings. An example view set is

Robotics Institute, CMU -20- VSAM Final Report




shown in Figure 16. One approach to building a background model from these images would be
to stitch them together into a spherical or cylindrical mosaic, however we use the set of images
directly, determining which is the appropriate one based on the distance in pan-tilt space. The
warping transformation between the current image and a nearby reference image is therefore a
simple planar projective transform.

The main technical challenge is how to register incoming video frames to the appropriate
background reference image in real-time. Most image registration techniques are difficult to im-
plement in real time without the use of special video processing hardware. We have developed
a novel approach to registration that relies on selective integration of information from a small
subset of pixels that contain the most information about the state variables to be estimated (the 2D
projective transformation parameters). The dramatic decrease in the number of pixels to process
results in a substantial speedup of the registration algorithm, to the point that it runs in real-time on
a modest PC platform. More details are presented in [9]. Results from a sample frame registration
and background subtraction are shown in Figure 17.

Figure 17: Results of background subtraction from a panning and tilting camera. From left to right:
1) current video frame, 2) closest background reference image, 3) warp of current frame into ref-
erence image coordinates, 4) absolute value of difference between warped frame and background
reference image.

3.2 Object Tracking

To begin to build a temporal model of activity, individual object blobs generated by motion detec-
tion are tracked over time by matching them between frames of the video sequence. Many systems
for object tracking are based on Kalman filters. However, pure Kalman filter approaches are of
limited use because they are based on unimodal Gaussian densities that cannot support simulta-
neous alternative motion hypotheses [15]. We extend the basic Kalman filter notion to maintain
a list of multiple hypotheses to handle cases where there is matching ambiguity between multiple
moving objects. Object trajectories are also analyzed to help reduce false alarms by distinguishing
between legitimate moving objects and noise or clutter in the scene.

An iteration of the basic tracking algorithm is

1) Predict positions of known objects
2) Associate predicted objects with current objects

Robotics Institute, CMU -21- VSAM Final Report




3) If tracks split, create new tracking hypothesis
4) If tracks merge, merge tracking hypotheses

5) Update object track models

6) Reject false alarms

Each object in each frame is represented by the following parameters: 1) p = position in image
coordinates; 2) &p = position uncertainty; 3) ¥ = image velocity; 4) 8/ = uncertainty in velocity; 5)
object bounding box in image coordinates; 6) image intensity template; 7) a numeric confidence
measure and 8) a numeric salience measure.

Predicting Future Object Positions

Both for computational simplicity and accurate tracking, it is important to estimate the position
of an object at each iteration of the tracker. The estimated position is used to cull the number of
moving regions that need to be tested. An object’s future position in the image is estimated in the
typical manner. Given a time interval Ar between two samples, the position is extrapolated as

Pn+1 = pn + T;n At

And the uncertainty in the position is assumed to be the original position uncertainty plus the
velocity uncertainty, grown as a function of time

8er—l = 8Pn + &V, At

These values are used to choose candidate moving regions from the current frame. This is done by
extrapolating the bounding box of the object by ¥, Ar and growing it by 8p,, 1. Any moving region
Ry+1 whose centroid falls in this predicted bounding box is considered a candidate for matching.

Object Matching

Given an object region R in the current frame, we determine the best match in the next frame by
performed image correlation matching, computed by convolving the object’s intensity template
over candidate regions in the new image. That is, to evaluate a potential object displacement d
for image region R, we accumulate a weighted sum of absolute intensity differences between each
pixel x in region R and the corresponding pixel x+ d in the next frame, yielding a correlation
function C(d) as:

C(d) — 2 W(iaj) |In('x) — n+1(x+d)l (1)

XER HW”

Here W is the weighting function, which will be described shortly, and ||W|| is a normalization
constant given by

Wll= Y W) )

XER

Robotics Institute, CMU -22 - VSAM Final Report




Negative Correlation Surface [-D(x;d)]

o

»
S

&

&

Normalised Correlation

8

Figure 18: A typical correlation surface (inverted for easier viewing)

Graphically, the results of C(d) for all offsets d can be thought of as a correlation surface (Figure
18), the minimum of which provides both the position of the best match, and a measure of the
quality of the match. The position of the best match d is given by the argmin of the of correlation

surface
d= rrbin C(d)

which can be refined to sub-pixel accuracy using bi-quadratic interpolation around d. The new
position of the object corresponding to this match is p,1 = pn + d, and the new velocity estimate
is given by V41 = %. The quality of the match Q(R) is the value of minC(d).

Due to real-time processing constraints in the VSAM testbed system, this basic correlation
matching algorithm is modified in two ways to improve computational efficiency. First, correlation
is only computed for “moving” pixels [19]. This is achieve by setting the weighting function W to
zero for pixels that are not moving, and thus not performing any computation for these pixels. For
moving pixels, a radial, linear weighting function is used:

W(x)=%+%<l-r—(x-)—>,

max

where r(x) is the radial distance, in pixels, from x to the center of the region R, and rmax is the
largest radial distance in R. This has the effect of putting more weight on pixels in the center of
the object.

Second, and more significantly, imagery is dynamically sub-sampled to ensure a constant
computational time per match. When matching an n X m size image template, the computation is
O(n*m?) which rapidly becomes unwieldy for large templates. The notion, then, is to fix a thresh-
old above which size, an image is sub-sampled. Furthermore, we treat the x and y dimensions
separately, so that no data is lost in one dimension if it is already small enough for efficient match-
ing. In this case, the threshold is set at 25 pixels, determined empirically to provide a reasonable
quantity of data for correlation matching without over-stressing the computational engine. The

algorithm is:

Robotics Institute, CMU -23 - VSAM Final Report




while (n > 25)

sub-sample in ‘x’ direction by 2;
while (m > 25)

sub-sample in ‘y’ direction by 2;

Of course, physically sub-sampling the imagery is almost as computationally expensive as
correlation matching, so this is implemented by counting the number of times sub-sampling should
be performed in each direction and selecting pixels at this spacing during the correlation process.
For example, an 80 x 45 image would be sub-sampled twice in the x direction and once in the y
direction making it a 20 x 22 image. So, in the correlation process, every 4th pixel in the x direction
and every ond pixel in the y direction are chosen for matching. The loss in resolution is (almost)
made up by the sub-pixel accuracy of the method. This method ensures that the computational
complexity of the matching process is < O(25*). The complexity of the matching as a function of
n and m is shown in Figure 19.

Complexity ot Correlation Matching

Figure 19: The computational complexity of the correlation matching algorithm with a threshold
of 25. Clearly, the complexity is bounded at O(25%).

Hypothesis Tracking and Updating

Tracking objects in video is largely a matter of matching. The idea is, at each frame, to match
known objects in one frame with moving regions in the next. There are 5 simple scenarios which
might arise:

* A moving region exists that does not match with any known object. In this case, a new object
is hypothesized and it’s confidence is set to a nominal low value.

e An object does not match any moving region. Either the object has left the field of view, has
been occluded, or has not been detected. In this case, the confidence measure of the object
is reduced. If the confidence drops below a threshold, the object is considered lost.

Robotics Institute, CMU -24 — VSAM Final Report




e An object matches exactly one moving region. This is the best case for tracking. Here, the
trajectory of the object is updated with the information from the new moving region and the
confidence of the object is increased.

e An object matches multiple moving regions. This could occur if the object breaks into
several independent objects (such as a group of people breaking up or a person getting out of
a car), or the detection algorithm does not cluster the pixels from an object correctly. In this
case, the best region (indicated by the correlation matching value) is chosen as the new object
position, its confidence value is increased, and any other moving regions are considered as
new object hypotheses and updated accordingly.

e Multiple objects match a single moving region. This might occur if two objects occlude each
other, two objects merge (such as a group of people coming together), or an erroneously split
object is clustered back together. This case is a special exception. Here, an analysis must
be done of the object trajectories to determine how to update the object hypotheses. Objects
merging into a single moving region are each tracked separately. Their trajectories are then
analyzed. If they share the same velocity for a period of time, they are merged into a single
object. If not, they are tracked separately. This allows the system to continue to track objects
that are occluding each other and yet merge ones that form a single object.

Object parameters are updated based on the parameters of the matched new observations (the
moving regions). The updated position estimatep,1 of the object is the position calculated to
sub-pixel accuracy by the correlation matching process The new velocity estimate 9,11 calculated
during matching is filtered through an IIR filter to provide V41

i;n—H = a"’\n-H + (1 - OC) i"’n
and the new velocity uncertainty estimate is generated using an IIR filter in the same way

In most cases, the template of the object is taken as the template of the moving region, and
the confidence is increased. However, if multiple objects are matched to a single moving region,
the templates are not updated. If two objects have come together and are occluding, the template
of each could be corrupted by the other if they were updated. The philosophy behind this deci-
sion is that, hopefully, two occluding objects will not change their appearance greatly during the
occlusion, and tracking will still be possible after the occlusion is finished. Note that even though
multiple objects may match to the same moving region, they will not necessarily get the same po-
sition estimate because the correlation matching process will match them to different parts of the
region.

Any object that has not been matched maintains its position and velocity estimates, and current
image template. Its confidence is then reduced. If the confidence of any object drops below a
certain threshold, it is considered lost, and dropped from the list. High confidence objects (ones

Robotics Institute, CMU —25- VSAM Final Report




that have been tracked for a reasonable period of time) will persist for several frames; so if an
object is momentarily occluded, but then reappears, the tracker will reacquire it. Recent results
from the system are shown in Figure 20.

TErgett(19]]

Figure 20: Tracking two objects simultaneously.

False Alarm Rejection

A serious issue with moving object tracking is the disambiguation of legitimate objects from “mo-
tion clutter” such as trees blowing in the wind, moving shadows, or noise in the video signal. One
cue to the legitimacy of an object track is persistence: an intermittent contact is less likely to be a
valid object than a persistent one. Another cue is the purposefulness or salience of the trajectory:
trees blowing in the wind tend to exhibit oscillatory motion whereas people and vehicles tend to
move with a purpose.

The tracking scheme described above automatically deals with the persistence of objects, but
special consideration must be made as to the salience of objects. The motion salience algorithm
used is based on a cumulative flow technique due to Wixson. Here, the optic flow of moving objects
is accumulated over time. However, when the flow changes direction, the accumulation is set to
zero. This way, insalient motion, such as that from blowing trees, never accumulates significantly,
whereas purposeful motion, such as a car driving along a road, accumulates a large flow.

Because optic flow is computationally expensive, a short cut is used. At each iteration, the
displacement d computed by the correlation matching process is taken as an average flow for the
object. Initially, three parameters, frame count ¢, cumulative flow dgym and maximum flowdpax
are set to zero. The algorithm for determining motion salience is to cumulatively add the displace-
ments at each frame to the cumulative flow, and increment the frame count. If, at any frame, the
cumulative displacement falls to < 90% of the maximum value (indicating a change in direction),
everything is set to zero again. Then, only objects whose displacements accumulate for several
frames are considered to be salient. The algorithm is displayed in Figure 21

Robotics Institute, CMU -26- VSAM Final Report




dsum = dsum + d

c=c+1

if (dsum > dmax)
dmax = dsum

if (dsum < 0.9 X dmax)
dsum = 0
c=0
dmax =0

if (¢ > Threshold)
Salient

else

Not salient

Figure 21: Moving object salience algorithm.

3.3 Object Type Classification

The ultimate goal of the VSAM effort is to be able to identify individual entities, such as the
“FedEx truck”, the “4:15pm bus to Oakland” and “Fred Smith”. Two object classification algo-
rithms have been developed. The first uses view dependent visual properties to train a neural
network classifier to recognize four classes: single human; human group; vehicles; and clutter
(Section 3.3.1). The second method uses linear discriminant analysis to determine provide a finer
distinction between vehicle types (e.g. van, truck, sedan) and colors (Section 3.3.2). This method
has also been successfully trained to recognize specific types of vehicles, such as UPS trucks and
campus police cars.

3.3.1 Classification using Neural Networks

The VSAM testbed classifies moving object blobs into general classes such as “humans” and “ve-
hicles” using viewpoint-specific neural networks, trained for each camera. Each neural network
is a standard three-layer network (Figure 22). Learning in the network is accomplished using the
backpropagation algorithm. Input features to the network are a mixture of image-based and scene-
based object parameters: image blob dispersedness (perimeter?/area (pixels)); image blob area
(pixels); apparent aspect ratio of the blob bounding box; and camera zoom. There are three output
classes: human; vehicle; and human group. When teaching the network that an input blob is a
human, all outputs are set to 0.0 except for “human”, which is set to 1.0. Other classes are trained
similarly. If the input does not fit any of the classes, such as a tree blowing in the wind, all outputs
are set to 0.0.

Results from the neural network are interpreted as follows:

Robotics Institute, CMU -27 - VSAM Final Report




Tnput Layer (4)

Hidden
Layer (16)

Output Layer (3)

Rejecttarget 0.0 00 00

Teach pattem

Figure 22: Neural network approach to object classification.

Class Samples | % Classified
Human 430 99.5
Human group 96 88.5
Vehicle 508 99.4
False alarms 48 64.5
Total 1082 96.9

Table 1: Results of neural net classification on VSAM data

if (output > THRESHOLD)
classification = maximum NN output
else
classification = REJECT

This neural network classification approach is fairly effective for single images; however, one
of the advantages of video is its temporal component. To exploit this, classification is performed
on each blob at every frame, and the results of classification are kept in a histogram. At each time
step, the most likely class label for the blob is chosen, as described in [21]. The results for this
classification scheme are summarized in Table 1.

We have experimented with other features that disambiguate human from vehicle classes.
These could also be incorporated into the neural network classification, at the expense of having
to perform the extra feature computation. Given the geolocation of an object, as estimated from its
image location and a terrain map (see Section 4.3), its actual width w and height / in meters can be
estimated from its image projection. A simple heuristic based on the ratio of these values performs

Robotics Institute, CMU - 28— VSAM Final Report




surprisingly well:

w< 1.1 h€[0.5,2.5] = human

we[1.1,2.2] he€[0.5,2.5] = group 3)
we 22,200 hel0.7,45] = vehicle

ELSE = reject

Another promising classification feature for a moving object is to determine whether it is
rigid or non-rigid by examining changes in its appearance over multiple frames [29]. This is most
useful for distinguishing rigid objects like vehicles from non-rigid walking humans and animals.
In [22] we describe an approach based on local computation of optic flow within the boundaries
of a moving object region. Given the gross displacement d of a moving blob R, as calculated in
Section 3.2, and the flow field v(x) computed for all pixels x in that blob, it is possible to determine
the velocity of the pixels relative to the body’s motion d by simply subtracting off the gross motion

r(x) =v(x)—d

to find the residual flow r(x). It is expected that rigid objects will have little residual flow, whereas
a non-rigid object such as a human being will exhibit more independent motion. When the average

absolute residual flow per pixel
A=Y lr@I/ X1 -

XER XER
is calculated, the magnitude of its value provides a clue to the rigidity of the object’s motion,
and over time its periodicity. Rigid objects such as vehicles display extremely low values of A
whereas moving objects such as humans display significantly more residual flow, with a periodic
component (Figure 23).

Rigidity
' --—-' Human

~

)
T

o
T

Average Residual Flow
Rod R

N
T

-

60 80 100 ~ 120
Frame Number

Figure 23: Average magnitude of residual flow for a person (top curve) and a car (bottom curve),
plotted over time. Clearly, the human has a higher average residual flow at each frame, and is thus
less rigid. The curve also exhibits the periodicity of the non-rigid human gait.

Robotics Institute, CMU —-29 — VSAM Final Report




3.3.2 C(lassification using Linear Discriminant Analysis

We have developed a method for classifying vehicle types and people using linear discriminant
analysis. The method has two sub-modules: one for classifying object “shape”, and the other for
determining “color”. Each sub-module computes an independent discriminant classification space,
and calculates the most likely class in that space using a weighted k-class nearest-neighbor (k-NN)
method.

To calculate both discriminant spaces, Linear Discriminant Analysis (LDA) is used. LDA is
a statistical tool for discriminating among groups, or clusters, of points in multidimensional space.
LDA is often called supervised clustering. In LDA, feature vectors computed on training examples
of different object classes are considered to be labeled points in a high-dimensional feature space.
LDA then computes a set of discriminant functions, formed as linear combinations of feature
values, that best separate the clusters of points corresponding to different object labels. LDA has
the following desirable properties: 1) it reduces the dimensionality of the data, and 2) the classes
in LDA space are separated as well as possible, meaning that the variance (spread of points) within
each class is minimized, while the variance between the classes (spread of cluster centroids) is
maximized.

LDA calculations proceed as follows. First, calculate the average covariance matrix of points
within each class (W) and between different classes (B)

C n.
W= (xic— %) (xic — )T @
c=1i=1
C
B=Y n.(¥—x) (% —x)T (5)
c=1

where C is the number of object classes, n. is the number of training examples in class ¢, x; is
the feature vector of the ith example in class ¢, and x. is the centroid vector of class ¢. Then,
compute the eigenvalues A; and eigenvectors b; of the separation matrix W~!B by solving the
generalized eigenvalue problem (B — \;W) x b; = 0. Assume without loss of generality that the
eigenvalues have been been sorted so that Ay > Ay > --- > Ay, where N is the dimensionality of
the feature space. The eigenvector b; associated with each eigenvalue A; provides the coefficients
of the ith discriminant function, which maps feature vector x into a coordinate in discriminant
space. Dimensionality reduction is achieved by only considering the M < N largest eigenvalues
(and eigenvectors), thus mapping N-dimensional feature vector x into an M-dimensional vector y

as
Mx1 MxN Nx1

y = [biby...b))"  x

In practice, we choose M to be the first integer such that

M N
dhi> 993N
i=1 i=1

Robotics Institute, CMU -30- VSAM Final Report




During on-line classification, feature vector x is measured for a detected object, and trans-
formed into a point y in discriminant space. To determine the class of the object, the distance from
point y to points representing each labeled training example is examined, and the k closest labeled
examples are chosen. These are the k nearest neighbors to y. According to the k-NN classification
rule, the labels of these nearest neighbors provide votes for the label (class) of the new object, and
their distance from y provides a weight for each vote. The class of y is chosen as the class that
receives the highest weighted vote. Due to the disparity in numbers of training samples for each
class, we also normalize the number of votes received for each class by the total number of training
examples from that class.

Shape classification, off-line learning process

The supervised learning process for object type classification based on shape is performed through
the following steps:

1. Human operators collect sample shape images and assign class labels to them. In this exper-
iment, we specify six shape-classes: human (single and group), sedan (including 4WD), van,
truck, Mule (golf carts used to transport physical plant workers) and other (mainly noise).
We also labeled three “special” objects: FedEx vans, UPS vans, and Police cars. Figures on
the following pages show sample input image chips for each of these object types. In total,
we collected approximately 2000 sample shape images.

2. The system calculates area, center of gravity, and width and height of the motion blob in
each sample image. The system also calculates 1st, 2nd and 3rd order image moments of
each blob, along the x-axis and y-axis of the images. Together, these features comprise an
11-dimensional sample vector of calculated image features.

3. The system calculates a discriminant space for shape classification using the LDA method
described above. -

Shape classification, on-line classification process

In the on-line classification phase, the system executes all steps automatically.

1. The system calculates area, center of gravity, width and height of an input image, and 1st,
2nd and 3rd order image moments along the x-axis and y-axis, forming an 11-dimensional
vector for the motion blob.

2. The corresponding point in discriminant space is computed as a linear combination of feature
vector values.

3. Votes for each class are determined by consulting the 10 nearest neighbor point labels dis-
criminant space, as described above.

Robotics Institute, CMU -31- VSAM Final Report




Color classification, off-line learning process

In addition to the type of object determined by blob shape, the dominant color of the object is
also classified using LDA. Observed color varies according to scene lighting conditions, and for
this reason, a discrete set of color classes is chosen that are fairly invariant (class-wise) to outdoor
lighting changes, and the variation in each class is learned using LDA.

1.

Human operators segment color samples from training images and divide them into six
classes: 1) red-orange-yellow, 2) green, 3) blue-lightblue, 4) white-silver-gray, 5) darkblue-
darkgreen-black, and 6) darkred-darkorange. We collected approximately 1500 images un-
der fine weather conditions and 1000 images under cloudy conditions.

The system samples RGB intensity values of 25 pixels on each sample image. The system
then maps sampled RGB values into (I1,12,I3) color space values according to the following
equations

- L“L?’GOJ“_B) % 10.0 6)
R_

n= gWB) % 100.0 )

13=(2‘0Xj8R_B)x100.0 (8)

The system averages the calculated (I1,12,I3) values to get a single 3-dimensional color fea-
ture vector for the that image.

. The system calculates a discriminant space for color classification using the LDA method

described above.

Color classification, on-line classification process

In the on-line classification phase, the system executes all steps automatically.

1.

The system measures RGB samples every 2 pixels along the x and y axes of the input motion
blob.

. RGB values are converted to (I1,12,I3) color space.

. The corresponding points in discriminant space are computed as a linear combination of

feature vector values, and the Euclidean distance to each color class is summed up.

Votes for each class are determined by consulting the 10 nearest neighbor point labels in
discriminant space, as described above.

. The color class associated with the shortest total Euclidean distance is chosen as the output

color class.

Robotics Institute, CMU -32- VSAM Final Report




Table 2: Cross-validation results for LDA classification.

Human | Sedan | Van | Truck | Mule | Others || Total | Errors %0
Human 67 0 0 0 0 7 74 7 91%
Sedan 0 33 2 0 0 0 35 2 94 %
Van 0 1 24 0 0 0 25 1 96%
Truck 0 2 1 12 0 0 15 3 80%
Mule 0 0 0 0 15 1 16 1 94%
Others 0 2 0 0 0 13 15 2 87%
| I | | Avg. [ 90% |
Results

The following pages show some sample training image chips for different object types, and some
sample output from the classification procedure. Table 2 shows a cross-validation evaluation be-
tween objects (columns) and classified results (rows).

The recognition accuracy has been found to be roughly 90%, under both sunny and cloudy
weather conditions. Currently, the system does not work well when it is actually raining or snow-
ing, because the raindrops and snowflakes interfere with the measured RGB values in the images.
For the same reason, the system does not work well in early mornings and late evenings, due to the
non-representativeness of the lighting conditions. The system is also foiled by backlighting and
specular reflection from vehicle bodies and windows. These are open problems to be solved.

Robotics Institute, CMU

-33—

VSAM Final Report




Trucks: Left

Trucks: Right

Sample images used for LDA learning : Trucks

Robotics Institute, CMU -34- VSAM Final Report




Vans : Left 1

Vans : Left 2

Sample images used for LDA learning : Vans

Robotics Institute, CMU —-35- VSAM Final Report




Sedans : Left 2

Sample images used for LDA learning : Sedans

Robotics Institute, CMU —36 ~ VSAM Final Report




(e) Mules Sample images used for LDA learning : 4WDs and Mules

Robotics Institute, CMU -37- VSAM Final Report




UPS 1

Police cars

Sample images used for LDA learning : Special objects

Robotics Institute, CMU -38- VSAM Final Report




XIimageHelper

S ..
XimageHelper

e

Some final results of the classification process.

Robotics Institute, CMU -39 - VSAM Final RepOrt




3.4 Activity Analysis

After detecting objects and classifying them as people or vehicles, we would like to determine
what these objects are doing. In our opinion, the area of activity analysis is one of the most
important open areas in video understanding research. We have developed two prototype activity
analysis procedures. The first uses the changing geometry of detected motion blobs to perform gait
analysis of walking and running human beings (Section 3.4.1). The second uses Markov model
learning to classify simple interactions between multiple objects, such as two people meeting, or a
vehicle driving into the scene and dropping someone off (Section 3.4.2).

3.4.1 Gait Analysis

Detecting and analyzing human motion in real-time from video imagery has only recently become
viable, with algorithms like Pfinder [30] and W* [14]. These algorithms represent a good first step
to the problem of recognizing and analyzing humans, but they still have drawbacks. In general,
they work by detecting features (such as hands, feet and head), tracking them, and fitting them to
a prior human model, such as the cardboard model of Ju et al [17].

We have developed a “star” skeletonization procedure for analyzing human gaits [11]. The
key idea is that a simple, fast extraction of the broad internal motion features of an object can
be employed to analyze its motion. A simple method is employed to robustly detect extremal
points on the boundary of the object, to produce a “star” skeleton. The star skeleton consists of the
centroid of a motion blob, and all of the local extremal points that are recovered when traversing
the boundary of the blob (see Figure 24).

O,end

CJ

distance,

centroid ——

distance d(i)

e border position

0 i — end
[ e ]

a d

distance (i)

"star" skeleton of the shape a b Py F ©

Figure 24: The boundary is “unwrapped” as a distance function from the centroid. This function
is then smoothed and extremal points are extracted.

Figure 25 shows star skeletons extracted for various objects. It is clear that, while this form of
skeletonization provides a sparse set of points, it can nevertheless be used to classify and analyze

Robotics Institute, CMU —40 - VSAM Final Report




the motion of different types of moving object.

video image motion detection skeleton

4 A

(b) Vehicle

-

{c) Polar bear

Figure 25: Skeletonization of different moving objects. It is clear the structure and rigidity of the
skeleton is significant in analyzing object motion.

One technique often used to analyze the motion or gait of an individual is the cyclic motion of
individual joint positions. However, in our implementation, the person may be a fairly small blob in
the image, and individual joint positions cannot be determined in real-time, so a more fundamental
cyclic analysis must be performed. Another cue to the gait of the object is its posture. Using
only a metric based on the star skeleton, it is possible to determine the posture of a moving human.
Figure 26 shows how these two properties are extracted from the skeleton. The uppermost skeleton
segment is assumed to represent the torso, and the lower left segment is assumed to represent a leg,
which can be analyzed for cyclic motion. '

l_‘x

y

L g
i S

(a) (b)

Figure 26: Determination of skeleton features. (a) 0 is the angle the left cyclic point (leg) makes
with the vertical, and (b) ¢ is the angle the torso makes with the vertical.

Figure 27 shows human skeleton motion sequences for walking and running, and the values

of 8, for the cyclic point. This data was acquired from video at a frame rate of 8Hz. Comparing
the average values ¢,, in Figures 27(e)-(f) shows that the posture of a running person can easily be

Robotics Institute, CMU —41 - VSAM Final Report




(a) skeleton motion of a walking person

ERSEOREN

7

LA LU AL A

11 12 13 14 15 17 18 19 20
(b) skeleton motion of a running person

Y S R S wietii i T
1 H ' ) H
; : ' ’ : )
(] R A T N (1] R [ A B
5 i ) ; ¢ 5 H 1 H
£ Y h E of t=
@ XN : = i H
- ) 0.5 H
: MM b Y
0 5 10 15 20 25
frame
(c) leg angle 6 of a walking person
| ' 04
=03
B
02
0.1

% 5 1015 20 25
frame
(e) torso angle¢ of a walking person (f) torso angle ¢ of a running person

Figure 27: Skeleton motion sequences. Clearly, the periodic motion of ©, provides cues to the
object’s motion as does the mean value of ¢,

distinguished from that of a walking person, using the angle of the torso segment as a guide. Also,
the frequency of cyclic motion of the leg segments provides cues to the type of gait.

3.4.2 Activity Recognition of Multiple Objects using Markov Models

We have developed a prototype activity recognition method that estimates activities of multiple
objects from attributes computed by low-level detection and tracking subsystems. The activity
label chosen by the system is the one that maximizes the probability of observing the given attribute
sequence. To obtain this, a Markov model is introduced that describes the probabilistic relations
between attributes and activities.

We tested the functionality of our method with synthetic scenes which have human-vehicle
interaction. In our test system, continuous feature vector output from the low-level detection and

tracking algorithms is quantized into the following discrete set of attributes and values for each
tracked blob

Robotics Institute, CMU —42 - VSAM Final Report




e object class: Human, Vehicle, HumanGroup
e object action: Appearing, Moving, Stopped, Disappearing
e Interaction: Near, MovingAwayFrom, MovingTowards, Nolnteraction

The activities to be labeled are 1) A Human entered a Vehicle, 2) A Human got out of a Vehicle,
3) A Human exited a Building, 4) A Human entered a Building, 5) A Vehicle parked, and 6)
Human Rendezvous. To train the activity classifier, conditional and joint probabilities of attributes
and actions are obtained by generating many synthetic activity occurrences in simulation, and
measuring low-level feature vectors such as distance and velocity between objects, similarity of
the object to each class category, and a noise-corrupted sequence of object action classifications.
Figure 28 shows the results for two scenes that were not used for joint probability calculation.

. . Result0: A Vehicle parked
Result0: A Human exited a Building Resultl: A Human got out of a Vehicle
Resultl: A Human entered a Vehicle

Figure 28: Results of Markov activity recognition on synthetic scenes. Left: A person leaves a
building and enters a vehicle. Right: A vehicle parks and a person gets out.

3.5 Web-page Data Summarization

We have developed a web-based data logging system (see Figure 29). In a high-traffic area, data on
dozens of people can be collected in just a few minutes of observation. Each observation consists
of color or thermal video from multiple cameras, best view image chips, collateral information
such as date and time, weather conditions, temperature, estimated 3D subject trajectory, camera
acquisition parameters, and object classification results. In addition to storing data for evaluation
and debugging, a data logging system will be necessary when VSAM systems begin 24/7 site
monitoring operation.

In our data logging prototype, all observations can be explored by web browsing via CGI
through an HTTP server, so that VSAM researchers can access the data from anywhere. There are
two ways to view object and activity information. Figure 30 shows a example activity report. The
activity report shows labeled events such as a “Car Parked”, or “A Human Entered a Building”,

Robotics Institute, CMU —-43 — VSAM Final Report




Super SPU

camera A Target S ;
Detection Tracker )
camera B . l c
LAcIivi!y itori —l lTarge( Classificati l :
- HTTP Server
VSAM Database cal
fink ¥ . B s ot |
Activity Database. | [ ! Target Database E
¥ L
0258 A ) goout of a Vehi [ro0 v CrL

10:30am A Vehicle parked(#003) ~._

. {11:19am A Human(#Ol;) exited a Building

#003  Vehilce sedan red (dagwood.vsam.ri.cmu.edu)

Human yellow

o3

remote

User (web browser)

Figure 29: Web-page data summarization system.

sorted by time. If a user wants more detail, a hypertext link brings up a page showing an image
chip of the object, along with its class and color information. Figure 31 shows an example object
report. All of the objects seen by the system, and the activities to which they are related, are shown
on a page, sorted by time of observation. To cut down on information overload, the user can select
specific subsets of object classes to view. When the user selects an object, the system automatically
brings up a page showing other objects of the same class having similar color features. In this way,
it might be possible for a user to detect the same vehicle or person being observed at different

places and times around the

A Vehicle parked

A Vehicle parked
00:36:13 PM A Human got out of a Vehicle
00:36:15 PM A Human got out of a Vehicle
00:36:23 PM Human Rendezvous
00:36.36 PM A Human entered a Vehicle
00:36:49 PM A Human entered a Buiding
00:37:13 PM A Human exted a Bullding
00:37:31 PM A Humnan entered a Vehicle

ln<n|ze al Cmge Nelm Umvarsg
P\ease ‘2ddress Comments 10 hironGbUEDCS I ecks

Robotics Institute, CMU

surveillance site.

more

Hu_ruan._s_amh detail
Human, Sedan H

Human, Human CIICk -
Human, Sedan
Human
Human
Human, Sedan

Type: Human (11500.0), Human_G (1059.5), Mule (63.6)
Color: Wh,S1,Gy (4484.3), DBI,DGy,BI (2570.8), Rd,Or,Y1
692.3)

Position: (202,59) on the right camera

Capture time 00:35:18 PM

Type: Sedan (207.1), SVan,4WD (154.2), Human (100.0)
Color: DRd,DOr (1155.6), DBI,DGy,Bi (872.8), Wh,SI,Gy

(196.6)
Position: (253,70) on the right camera
Capture time 00:36:04 PM

Figure 30: Activity report for web page.

— 44 —

This page is maintained by The Rohotics nshits hsmma mcamega Melicn University
Please address comments to hironobu@xs cmy e

VSAM Final Report




Target Report ouov an 1008

Sepmi T TN e e

Typa: Seden (051 5, SV 4 (8725, Others (227)
Color: W 5.0y (116239), LB (1085 3), DBLOOY 8 (4128)
Poalian: (13157 oo g cemery
Copture time 0036 136
Actiity: A Varise purted( 00.96 05 PH)

‘Athpen ot of » Vorge( 0036 157M)
i crizmg s Ve (0036.35 )

o srore e b st e i S < e e 2] A Type: Human (11500.0), Human_G (1058.5), Mule (63, 0)
KEAIT ARt S % Color: Wh,Si,Gy (4484.3), DBI,DGy, Bl (2570.8), Rd,Or,
' (8023)

’ Position: (202,59 on the right camera

Capture time 00:36:18 FM

Ty Soctan (207.1), SVen MO (156.7), Hman (100
‘Calor: DRUDOr (1155, mml(mslw‘swmss,
Poskions CROTD e i curwrs

Captwre time 00.06.06
et X vt pote 00 6 08P
0% 13PM)
& Hunncetores 2 Vetioe (0037 31 PW)

Farget 0 0529 - Wost similar

. Types Rt (415000), a0 11059.5), Wk (638)
% ‘Calor: W SOy (6486.3), 0BID0Y 8 (2570 8), Ra. v (6922)
4 et (202,59) o he vt cancrs
Captumn thre Q0% 19

Type: Human (6500.0)

Color: Wh,S1,Gy (2048.9), DBI,DGy,BI (1461.2), Rd,0r,Y1
(#17.8)

Position: (280,62) on the right camera

Capture time 00:37:18 PM

Activity: A Human exked a Buiiding A Human entered 3
Vehicle

o ‘1 search

. Hren Resiciyous (O X 54)
C]le A Huren ertored & mv(ll’!lsv-)

This page Is maintsined bﬂ" Emgmmnmmmm

X Type: Human (65000, a0 (1250.9) ke (173 9)
‘Cotor h 510y (255.3), 0800y B (Y4321, 00 (257 1)
Poakien: 144.50) o the it cuners.

Copara time (062! PN
Acteny: &

Pi9eso 8000SS COMMONGS 1O

003%615M)
ot -

Figure 31: Object report for web page.

3.6 Airborne Surveillance

Fixed ground-sensor placement is fine for defensive monitoring of static facilities such as depots,
warehouses or parking lots. In those cases, sensor placement can be planned in advance to get
maximum usage of limited VSAM resources. However, the battlefield is a large and constantly
shifting piece of real-estate, and it may be necessary to move sensors around in order to maximize
their utility as the battle unfolds. While airborne sensor platforms directly address this concern,
the self-motion of the aircraft itself introduces challenging video understanding issues. During
the first two years of this program, the Sarnoff Corporation developed surveillance technology to
detect and track individual vehicles from a moving aircraft, keep the camera turret fixated on a
ground point, and multitask the camera between separate geodetic ground positions. .

3.6.1 Airborne Object Tracking

Object detection and tracking is a difficult problem from a moving sensor platform. The difficulty
arises from trying to detect small blocks of moving pixels representing independently moving ob-
ject objects when the whole image is shifting due to self-motion. The key to success with the
airborne sensor is characterization and removal of self-motion from the video sequence using the
Pyramid Vision Technologies PVT-200 real-time video processor system. As new video frames
stream in, the PVT processor registers and warps each new frame to a chosen reference image,
resulting in a cancelation of pixel movement, and leading to a “stabilized” display that appears
motionless for several seconds. During stabilization, the problem of moving object detection from
a moving platform is ideally reduced to performing VSAM from a stationary camera, in the sense

Robotics Institute, CMU —45 - VSAM Final Report




that moving objects are readily apparent as moving pixels in the image. Object detection and track-
ing is then performed using three-frame differencing after using image alignment to register frame
I; > to I; and frame I, _; to I;, performed at 30 frames/sec. Sample results are shown in Figure 32.
Under some circumstances, there is some remaining residual pixel motion due to parallax caused
by significant 3D scene structure such as trees and smokestacks. Removing parallax effects is a
subject of on-going research in the vision community.

Figure 32: Detection of small moving objects from a moving airborne sensor.

3.6.2 Camera Fixation and Aiming

It is well known that human operators fatigue rapidly when controlling cameras on moving airborne
and ground platforms. This is because they must continually adjust the turret to keep it locked on
a stationary or moving object. Additionally, the video is continuously moving, reflecting the self-
motion of the camera. The combination of these factors often leads to operator confusion and
nausea. Sarnoff has built image alignment techniques [5, 13] to stabilize the view from the camera
turret and to automate camera control, thereby significantly reducing the strain on the operator. In
particular, real-time image alignment is used to keep the camera locked on a stationary or moving
point in the scene, and to aim the camera at a known geodetic coordinate for which reference
imagery is available. More details can be found in [28]. Figure 33 shows the performance of
the stabilization/fixation algorithm on two ground points as the aircraft traverses an approximate
ellipse over them. The field of view in these examples is 3°, and the aircraft took approximately 3
minutes to complete each orbit.

3.6.3 Air Sensor Multi-Tasking

Occasionally, a single camera resource must be used to track multiple moving objects, not all of
which fit within a single field of view. This problem is particularly relevant for high-altitude air
platforms that must have a narrow field of view in order to see ground objects at a reasonable

Robotics Institute, CMU —-46 — VSAM Final Report




Fixation on target point B.

Figure 33: Fixation on two target points. The images shown are taken 0, 45, 90 and 135 seconds
after fixation was started. The large center cross-hairs indicate the center of the stabilized image,
i.e. the point of fixation

resolution. Sensor multi-tasking is employed to switch the field of view periodically between
two (or more) target areas that are being monitored. This process is illustrated in Figure 34 and
described in detail in [28].

Figure 34: Footprints of airborne sensor being autonomously multi-tasked between three disparate
geodetic scene coordinates.

4 Site Models, Calibration and Geolocation

An automated surveillance system can benefit greatly from the scene-specific knowledge provided
by a site model. Some of the many VSAM tasks supported by an accurate 3D site model are:

e computation of object geolocation (Section 4.3);

Robotics Institute, CMU —47 - VSAM Final Report




e visibility analysis (predicting what portions of the scene are visible from which cameras) to
allow more effective sensor tasking;

e geometric focus of attention, for example to task a sensor to monitor the door of a building,
or specify that vehicles should appear on roads;

e suppression of false alarms in areas of foliage;
o prediction of visual effects like shadows;

e visualization of the scene to enable quick comprehension of geometric relationships between
sensors, objects, and scene features;

e simulation for planning best sensor placement and for debugging algorithms; and
¢ landmark-based camera calibration.

4.1 Scene Representations

Figure 35 illustrates the wide variety of scene representations that have been used in the VSAM
testbed system over the past three years. Most of the variety is due to work in our first year
of effort (1997), where we bootstrapped a representation of the Bushy Run site largely by hand.
During the second and third years of the project, performed on the campus of CMU, we used a
Compact Terrain Data Base (CTDB) model of campus, which ended up supporting almost all of
our algorithmic needs. ‘

A) USGS orthophoto. The United States Geological Survey (USGS) produces several digital
mapping products that can be used to create an initial site model. These include 1) Digital Or-
thophoto Quarter Quad (DOQQ) - a nadir (down-looking) image of the site as it would look
under orthographic projection (Figure 35a). The result is an image where scene features appear in
their correct horizontal positions. 2) Digital Elevation Model (DEM) - an image whose pixel val-
ues denote scene elevations at the corresponding horizontal positions. Each grid cell of the USGS
DEM shown encompasses a 30-meter square area. 3) Digital Topographic Map (DRG) - a digital
version of the popular USGS topo maps. 4) Digital Line Graph (DLG) - vector representations of
public roadways and other cartographic features. Many of these can be ordered directly from the
USGS EROS Data Center web site, located at URL http://edcwww.cr.usgs.gov/. The
ability to use existing mapping products from USGS or National Imagery and Mapping Agency
(NIMA) to bootstrap a VSAM site model demonstrates that rapid deployment of VSAM systems
to monitor trouble spots around the globe is a feasible goal.

B) Custom DEM. The Robotics Institute autonomous helicopter group mounted a high precision
laser range finder onto a remote-control Yamaha helicopter to create a high-resolution (half-meter
grid spacing) DEM of the Bushy Run site for VSAM DEMO I (Figure 35b). Raw radar returns
were collected with respect to known helicopter position and orientation (using on-board altimetry
data) to form a cloud of points representing returns from surfaces in the scene. These points were
converted into a DEM by projecting into LVCS horizontal-coordinate bins, and computing the
mean and standard deviation of height values in each bin.

Robotics Institute, CMU - 48 — VSAM Final Report




Figure 35: A variety of site model representations have been used in the VSAM IFD testbed system:
A) USGS orthophoto; B) custom DEM; C) aerial mosaic; D) VRML model; E) CTDB site model;
and F) spherical representations.

Robotics Institute, CMU -49 - VSAM Final Report




C) Mosaics. A central challenge in surveillance is how to present sensor information to a human
operator. The relatively narrow field of view presented by each sensor makes it very difficult for
the operator to maintain a sense of context outside the camera’s immediate image. Image mosaics
from moving cameras overcome this problem by providing extended views of regions swept over
by the camera. Figure 35c displays an aerial mosaic of the Demo I Bushy Run site. The video
sequence was obtained by flying over the demo site while panning the camera turret back and
forth and keeping the camera tilt constant[13, 25, 24]. The VSAM IFD team also demonstrated
coarse registration of this mosaic with a USGS orthophoto using a projective warp to determine
an approximate mapping from mosaic pixels to geographic coordinates. It is feasible that this
technology could lead to automated methods for updating existing orthophoto information using
fresh imagery from a recent fly-through. For example, seasonal variations such as fresh snowfall
(as in the case of VSAM Demo I) can be integrated into the orthophoto.

D) VRML models. Figure 35d shows a VRML model of one of the Bushy Run buildings and
its surrounding terrain. This model was created by the K?T company using the factorization
method [26] applied to aerial and ground-based video sequences.

E) Compact Terrain Data Base (CTDB). During the last two years, the VSAM testbed system
has used a Compact Terrain Data Base (CTDB) model of campus as its primary site model rep-
resentation. The CTDB was originally designed to represent large expanses of terrain within the
context of advanced distributed simulation, and has been optimized to efficiently answer geometric
queries such as finding the elevation at a point in real-time. Terrain can be represented as either a
grid of elevations, or as a Triangulated Irregular Network (TIN), and hybrid data bases containing
both representations are allowed. The CTDB also represents relevant cartographic features on top
of the terrain skin, including buildings, roads, bodies of water, and tree canopies. Figure 35e shows
a small portion of the Schenley Park / CMU campus CTDB. An important benefit to using CTDB
as a site model representation for VSAM processing is that it allows us to easily interface with the
synthetic environment simulation and visualization tools provided by ModSAF and ModStealth.

F) Spherical Representations. During the second year (1998), VSAM testbed SPU’s used the
Microsoft Windows NT operating system, which is not supported by CTDB software. For that
reason, we explored the use of spherical lookup tables for each fixed-mount SPU. Everything
that can be seen from a stationary camera can be represented on the surface of a viewing sphere
(Figure 35f). This is true even if the camera is allowed to pan and tilt about the focal point, and
to zoom in and out — the image at any given (pan,tilt,zoom) setting is essentially a discrete sample
of the bundle of light rays impinging on the camera’s focal point. We used this idea to precompile
and store a spherical lookup table containing the 3D locations and surface material types of the
points of intersection of camera viewing rays with the CTDB site model. During the third year,
we changed from Windows to the Linux operating system, a variant of Unix, and could then use
CTDB directly on each SPU. This made the spherical lookup tables obsolete.

Three geospatial site coordinate systems are used interchangeably within the VSAM testbed.
The WGS84 geodetic coordinate system provides a reference frame that is standard, unambiguous
and global (in the true sense of the word). Unfortunately, even simple computations such as the

Robotics Institute, CMU -50- VSAM Final Report




distance between two points become complicated as a function of latitude, longitude and elevation.
For this reason, site-specific Cartesian coordinate systems are typically established to handle the
bulk of the geometric model computations that must be performed. We have used a Local Vertical
Coordinate System (LVCS) [2] with its origin at the base of the PRB operator control center for
representing camera positions and for providing an operator display map coordinate system. The
CTDB model of campus is based on Universal Transverse Mercator (UTM) coordinates, which
provide an alternative Cartesian coordinate system, and which are related to the LVCS by a rotation
and translation. Conversion between geodetic, LVCS, and UTM coordinates is straightforward, so
that each can be used interchangeably in the system.

4.2 Camera Calibration

For a VSAM system to make full use of a geometric site model requires calibrating the cameras
with respect to the model. We have developed a set of calibration procedures specifically de-
signed for in-situ (meaning “in place”) camera calibration. We believe that all cameras should
be calibrated in an environment that resembles their actual operating conditions. This philoso-
phy is particularly relevant for outdoor camera systems. Cameras get jostled during transport and
installation, and changes in temperature and humidity can affect a camera’s intrinsic parameters.
Furthermore, it is impossible to recreate the full range of zoom and focus settings that are useful
to an outdoor camera system within the confines of an indoor lab.

Some amount of on-site calibration is always necessary, if only for determining the extrinsic
parameters (location and orientation) of the camera placement. Unfortunately, outdoors is not an
ideal environment for careful camera calibration. It can be cold, rainy, or otherwise unpleasant.
Simple calibration methods are needed that can be performed with minimal human intervention.

Figure 36: GPS landmarks measurements for extrinsic camera calibration on the CMU campus.

Robotics Institute, CMU -51- VSAM Final Report




We have developed methods for fitting a projection model consisting of intrinsic (lens) and
extrinsic (pose) parameters of a camera with active pan, tilt and zoom control. Intrinsic parameters
are calibrated by fitting parametric models to the optic flow induced by rotating and zooming the
camera. These calibration procedures are fully automatic and do not require precise knowledge
of 3D scene structure. Extrinsic parameters are calculated by sighting a sparse set of measured
landmarks in the scene (see Figure 36). Actively rotating the camera to measure landmarks over
a virtual hemispherical field of view leads to a well-conditioned exterior orientation estimation
problem. Details of the calibration procedures are presented in [8].

4.3 Model-based Geolocation

The video understanding techniques described in Section 3 operate primarily in image space. A
large leap in terms of descriptive power can be made by transforming image blobs and measure-
ments into 3D scene-based objects and descriptors. In particular, determination of object location
in the scene allows us to infer the proper spatial relationships between sets of objects, and between
objects and scene features such as roads and buildings. Furthermore, we believe that computation
of 3D spatial geolocation is the key to coherently integrating a large number of object hypotheses
from multiple, widely-spaced sensors.

| Ray: (x0,Y0,20) + KUVW) |

User view

Vertical
Projection

—1{ Ray: (X0,Y0) + k(u,V) |- e
A L—1 3] 2| X0, Yﬂl

=

9 8\.y
7 6
B
|

10

13

—| Etev(x04ku, YO+kv) > 20+ kW |
I S R R

(a) (b)

Figure 37: (a) Estimating object geolocations by intersecting backprojected viewing rays with a
terrain model. (b) A Bresenham-like traversal algorithm determines which DEM cell contains the
first intersection of a viewing ray and the terrain.

In regions where multiple sensor viewpoints overlap, object locations can be determined very
accurately by wide-baseline stereo triangulation. However, regions of the scene that can be simul-

Robotics Institute, CMU -52- VSAM Final Report




taneously viewed by multiple sensors are likely to be a small percentage of the total area of regard
in real outdoor surveillance applications, where it is desirable to maximize coverage of a large area
using finite sensor resources. Determining object locations from a single sensor requires domain
constraints, in this case the assumption that the object is in contact with the terrain. This con-
tact location is estimated by passing a viewing ray through the bottom of the object in the image
and intersecting it with a model representing the terrain (see Figure 37a). Sequences of location
estimates over time are then assembled into consistent object trajectories.

Previous uses of the ray intersection technique for object localization in surveillance research
have been restricted to small areas of planar terrain, where the relation between image pixels and
terrain locations is a simple 2D homography [6, 10, 20]. This has the benefit that no camera
calibration is required to determine the back-projection of an image point onto the scene plane,
provided the mappings of at least four coplanar scene points are known beforehand. However,
large outdoor scene areas may contain significantly varied terrain. To handle this situation, we
perform geolocation using ray intersection with a full terrain model provided, for example, by a
digital elevation map (DEM).

Given a calibrated sensor, and an image pixel corresponding to the assumed contact point
between an object and the terrain, a viewing ray (xo -+ ku,yo + kv, zo + kw) is constructed, where
(x0,Y0,20) is the 3D sensor location, (u,v,w) is a unit vector designating the direction of the view-
ing ray emanating from the sensor, and k > 0 is an arbitrary distance. General methods for de-
termining where a viewing ray first intersects a 3D scene (for example, ray tracing) can be quite
involved. However, when scene structure is stored as a DEM, a simple geometric traversal al-
gorithm suggests itself, based on the well-known Bresenham algorithm for drawing digital line
segments. Consider the vertical projection of the viewing ray onto the DEM grid (see Figure 37b).
Starting at the grid cell (xo,yo) containing the sensor, each cell (x,y) that the ray passes through
is examined in turn, progressing outward, until the elevation stored in that DEM cell exceeds the
z-component of the 3D viewing ray at that location. The z-component of the view ray at location
(x,y) is computed as either

20+——w or zp+

(x —xo) (y — o) ~
» W ©

depending on which direction cosine, u or v, is larger. This approach to viewing ray intersection
localizes objects to lie within the boundaries of a single DEM grid cell. A more precise sub-cell
location estimate can then be obtained by interpolation. If multiple intersections with the terrain
beyond the first are required, this algorithm can be used to generate them in order of increasing
distance from the sensor, out to some cut-off distance. See [7] for more details.

Geolocation Evaluation

We have evaluated geolocation accuracy for two cameras (PRB and Wean) on the CMU cam-
pus using a Leica laser-tracking theodolite to generate ground truth. The experiment was run by
having a person carry the theodolite prism for two loops around the PRB parking lot, while the
system logged time-stamped horizontal (X,Y) positions estimated by the Leica theodolite. The

Robotics Institute, CMU -53- VSAM Final Report




system also simultaneously tracked the person using the PRB and Wean cameras, while logging
time-stamped geolocation estimates from each camera.

(a) (b)

Figure 38: Ground truth trajectory overlaid with geolocation estimates from a) PRB camera, b)
Wean camera, and c) an average of PRB and Wean estimates. Scales are in meters.

Figure 38 shows the ground truth trajectory curve, overlaid with geolocation estimates from
(a) the PRB camera, (b) the Wean camera, and (c) an average of the PRB and Wean camera esti-
mates for corresponding time stamps. Both cameras track the overall trajectory fairly well. The
PRB camera geolocation estimates have large errors at the lower portions and upper right arc of
the loop, because the person’s feet were occluded by parked vehicles when walking through those
areas. The higher elevation and direction of view of Wean camera allowed it to see the person’s feet
at the lower portion of the loop, so the trajectory is correctly followed there. An error still occurs
at the top right of the loop, as the person comes close to two vehicles and is reflected from their
shiny surfaces. This pulls the bounding box off the person’s feet, and causes an underestimation of
their position. Geolocation estimates were only averaged for points with time stamps agreeing to
within a small threshold, so there are far fewer points shown in Figure 38c. The effect of averaging
is to smooth out many of the high variance portions of both curves, although the overall distance
accuracy does not noticeably improve.

Geolocation estimates are computed by backprojecting a point located at the center of the
lowest side of the bounding box enclosing a moving blob. The system maintains a running estimate
of the variance of this point — the variance is high when the position or shape of the bounding
box changes greatly during tracking. The system computes an internal estimate of horizontal
geolocation error by projecting an error box of one standard deviation around the image point used
for estimation, until it intersects the terrain, thus providing a bound on the error of the geolocation
estimate. A subsampling of this set of error boxes is shown in Figure 39, for both cameras. It is
interesting to note that during portions of the trajectory where errors are large due to occlusions or
reflections, the system is aware that the variance of the geolocation estimate is high.

To determine actual geolocation accuracy, the time stamp of each geolocation estimate was
compared to the list of ground truth time stamps to find a suitably close correspondence. For cases
where a corresponding ground truth point was found, the horizontal displacement error is plotted
in Figure 40, for a) PRB camera, b) Wean camera, and c) the average geolocation computed from
PRB and Wean. The mean and covariance of each point cloud were estimated, and the major and

Robotics Institute, CMU -54- VSAM Final Report




& - g,
..c' &
3 =
24807 . 2= 2480}
%
» R
-
» >
2470} g -
® % 24701
L]
+
Y &
2460+ W 2460+
2450+ @ @ BN 24501

1520 1530 1540

1500 1510 1520 1530 1540 1490 1500

(a) (®

Figure 39: Geolocation error boxes computed by the system for trajectory estimates from a) PRB
camera and b) Wean camera. Scales are in meters. Compare with Figures 38a and b.

minor axes of the covariance ellipse is overlaid on each plot, with the length of the axes scaled
to represent 1.5 times the standard deviation of the point spread along that direction. Numeric
standard deviations along each axis are displayed in the following table.

Geolocation Estimates | max std (meters) | min std (meters)
PRB 0.6520 0.3139
Wean 0.5232 0.1628
Avg of PRB and Wean 0.7184 0.3337

These numbers confirm the observation that averaging geolocation estimates from both cameras
is not improving accuracy. It is actually getting slightly worse. Referring again to Figure 40, we
see that the center of each error point spread is not at (0,0). We are therefore averaging biased
geolocation estimates from each camera, and the noise in each estimate is therefore not cancelling
out properly, but rather intensifying. Removing the geolocation bias from each sensor will be
necessary to achieve more accurate results from averaging. Possible sources of error are the camera
calibration parameters, the terrain model, and small biases in the time stamps produced by each
SPU. Nonetheless, standard deviation of geolocation estimates from each camera are roughly on
the order of .6 meters along the axis of maximum spread, and roughly .25 meters at minimum.
We have confirmed that the axis of maximum error for each camera is oriented along the direction
vector from the camera to the object being observed.

4.4 Model-based Human-Computer Interface

Keeping track of people, vehicles, and their interactions, over a chaotic area such as the battlefield,
is a difficult task. The commander obviously shouldn’t be looking at two dozen screens showing

Robotics Institute, CMU —-55- VSAM Final Report




-1

-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2

(a) (b) (©)

Figure 40: Plotted covariances of the horizontal displacement errors between estimate geoloca-
tions and ground truth locations for corresponding time stamps. a) PRB camera, b) Wean camera,
and c) average of PRB and Wean estimates with corresponding time stamps. Scales are in meters.

raw video output — that amount of sensory overload virtually guarantees that information will be
ignored, and requires a prohibitive amount of transmission bandwidth. Our suggested approach is
to provide an interactive, graphical visualization of the battlefield by using VSAM technology to
automatically place dynamic agents representing people and vehicles into a synthetic view of the
environment.

This approach has the benefit that visualization of the object is no longer tied to the original
resolution and viewpoint of the video sensor, since a synthetic replay of the dynamic events can
be constructed using high-resolution, texture-mapped graphics, from any perspective. Particularly
striking is the amount of data compression that can be achieved by transmitting only symbolic geo-
registered object information back to the operator control unit instead of raw video data. Currently,
we can process NTSC color imagery with a frame size of 320x240 pixels at 10 frames per second
on a Pentium II computer, so that data is streaming into the system through each sensor at a rate of
roughly 2.3Mb per second per sensor. After VSAM processing, detected object hypotheses contain
information about object type, location and velocity, as well as measurement statistics such as a
time stamp and a description of the sensor (current pan, tilt, and zoom for example). Each object
data packet takes up roughly 50 bytes. If a sensor tracks 3 objects for one second at 10 frames per
second, it ends up transmitting 1500 bytes back to the OCU, well over a thousandfold reduction in
data bandwidth.

Ultimately, the key to comprehending large-scale, multi-agent events is a full, 3D immersive
visualization that allows the human operator to fly at will through the environment to view dynamic
events unfolding in real-time from any viewpoint. We envision a graphical user interface based
on cartographic modeling and visualization tools developed within the Synthetic Environments
(SE) community. The site model used for model-based VSAM processing and visualization is
represented using the Compact Terrain Database (CTDB). Objects are inserted as dynamic agents
within the site model and viewed by Distributed Interactive Simulation clients such as the Modular
Semi-Automated Forces (ModSAF) program and the associated 3D immersive ModStealth viewer.

We first demonstrated proof-of-concept of this idea at the Dismounted Battle Space Battle

Robotics Institute, CMU -56 - VSAM Final Report




Lab (DBBL) Simulation Center at Fort Benning Georgia as part of the April 1998 VSAM work-
shop. On April 13, researchers from CMU set up a portable VSAM system at the Benning Mobile
Operations in Urban Terrain (MOUT) training site. The camera was set up at the corner of a build-
ing roof whose geodetic coordinates had been measured by a previous survey [12], and the height
of the camera above that known location was measured. The camera was mounted on a pan-tilt
head, which in turn was mounted on a leveled tripod, thus fixing the roll and tilt angles of the
pan-tilt-sensor assembly to be zero. The yaw angle (horizontal orientation) of the sensor assembly
was measured by sighting through a digital compass. After processing several troop exercises, log
files containing camera calibration information and object hypothesis data packets were sent by
FTP back to CMU and processed using the CTDB to determine a time-stamped list of moving
objects and their geolocations. Later in the week, this information was brought back to the DBBL
Simulation Center at Benning where, with the assistance of colleagues from BDM, it was played
back for VSAM workshop attendees using custom software that broadcast time-sequenced simu-
Jated entity packets to the network for display by both ModSAF and ModStealth. Some processed
VSAM video data and screen dumps of the resulting synthetic environment playbacks are shown
in Figure 41.

Figure 41: Sample synthetic environment visualizations of data collected at the Benning MOUT
site. A) Automated tracking of three people. B) ModSAF 2D orthographic map display of estimated
geolocations. C) Tracking of a soldier walking out of town. D) Immersive, texture-mapped 3D
visualization of the same event, seen from a user-specified viewpoint.

We have also demonstrated that this visualization process can form the basis for a real-time
immersive visualization tool. First, we ported object geolocation computation using the CTDB
onto the VSAM SPU platforms. This allowed estimates of object geolocation to be computed
within the frame-to-frame tracking process, and to be transmitted in data packets back to the OCU.
At the OCU, incoming object identity and geolocation data is repackaged into Distributed Inter-
active Simulation (DIS) packets understood by ModSAF and ModStealth clients, and re-broadcast
(multicast) on the network. At that point, objects detected by the SPUs are viewable, after a short
lag, within the context of the full 3D site model using the ModStealth viewer (Figure 42).

Robotics Institute, CMU -57- VSAM Final Report




Figure 42: Real-time, 3D ModStealth visualization of objects detected and classified by the VSAM
testbed system and transmitted via DIS packets on the network.

5 Sensor Coordination

In most complex outdoor scenes, it is impossible for a single sensor to maintain its view of an
object for long periods of time. Objects become occluded by environmental features such as trees
and buildings, and sensors have limited effective fields of regard. A promising solution to this
problem is to use a network of video sensors to cooperatively track objects through the scene.
We have developed and demonstrated two methods of sensor coordination in the VSAM testbed.
First, objects are tracked long distances through occlusion by handing-off between cameras situated
along the object’s trajectory. Second, wide-angle sensors keeping track of all objects in a large area
are used to task active pan, tilt and zoom sensors to get a better view of selected objects, using a
process known as sensor slaving.

5.1 Multi-Sensor Handoff

There has been little work done on autonomously coordinating multiple active video sensors to
cooperatively track a moving object. One approach is presented by Matsuyama for a controlled
indoor environment where four cameras lock onto onto a particular object moving across the floor
[23]. We approach the problem more generally by using the object’s 3D geolocation (as computed
in the last section) to determine where each sensor should look. The pan, tilt and zoom of the
closest sensors are then controlled to bring the object within their fields of view, while a viewpoint
independent cost function is used to determine which of the moving objects they find are the
specific object of interest. These steps are described below.

Assume that at time £y a sensor with pan, tilt value (89, o) has been tasked to track a par-
ticular object with 3D ground location Xy and velocity X. Given a function G(X) that converts a
ground coordinate to a pan, tilt point (determined by camera calibration), the object’s location X
is converted to a desired sensor pan, tilt value (84,¢,) = G(Xp). The behavior of the pan, tilt unit

Robotics Institute, CMU -58 - VSAM Final Report




is approximated by a linear system with infinite acceleration and maximum velocity (:i:é, :l:(])) as

0(t) = o+ 6(t —10)
o(t) = do £ 0(¢ — o)

Substituting the desired sensor pan, tilt (84,¢4) into the left hand side of this equation and solving
for (t — tp) yields a prediction of the acquisition time, that is, how long it would take for the pan,
tilt device to point at the object’s current location. However, the object will have moved further
along its trajectory by that time. This new object position is estimated as

(10)

X(t) =Xo+X(t —to) (11)

This predicted object position is then converted into a new desired sensor pan, tilt, and the whole
procedure iterates until the time increments (¢ — f9) become small (convergence) or start to increase
(divergence). This algorithm guarantees that if it converges, the sensor will be able to reacquire
the object.

An appropriate camera zoom setting can be determined directly given a desired size of the
object’s projection in the image. Knowing the classification of the object C (as determined from
Section 3.3), we employ the heuristic that humans are approximately 6 feet (2m) tall and vehicles
are approximately 15 feet (5m) long. Given the position of the object and the sensor, and therefore
the range r to the object, the angle p subtended by the image of the object is approximately

13

_ f{ tan™'2, human
tan”" 3, vehicle

Knowing the focal length of the sensor as a function of zoom, as determined from camera calibra-
tion, the appropriate zoom setting is easily chosen.

Once the sensor is pointing in the right direction at the right zoom factor, all moving objects
extracted are compared to the specific object of interest to see if they match. This need to re-acquire
a specific object is a key feature necessary for multi-camera cooperative surveillance. Obviously
viewpoint-specific appearance criteria are not useful, since the new view of the object may be
significantly different from the previous view. Therefore, recognition features are needed that are
independent of viewpoint. In our work we use two such criteria: the object’s 3D scene trajectory
as determined from geolocation, and a normalized color histogram of the object’s image region.
Candidate motion regions are tested by applying a matching cost function in a manner similar to
that described in Section 3.2.

An example of using multi-sensor hand-off to track a vehicle as it travels through campus is
shown in Figure 43. This diagram shows the continuous, autonomous tracking of a single object
for a distance of approximately 400m and a time of approximately 3 minutes. In Figure 43(a) two
sensors cooperatively track the object. At the time shown in Figure 43(b) the object is occluded
from sensor 2, but is still visible from sensor 1, which continues to track it. When the object moves
out of the occlusion area, sensor 2 is automatically retasked to track it, as shown in Figure 43(c).

Robotics Institute, CMU -59 - VSAM Final Report




Sensor 2 - view JERE

%

A

Sensor 1- view}

O

Figure 43: Cooperative, multi-sensor tracking (see text for description,).

Robotics Institute, CMU - 60 - VSAM Final Report




Finally, when the object moves out of the field of regard of both sensors, a third sensor is auto-
matically tasked to continue surveillance, as shown in Figure 43(d). By automatically managing
multiple, redundant camera resources, the vehicle is continuously tracked through a complex urban
environment.

5.2 Sensor Slaving

A second form of sensor cooperation is sensor slaving. We use the term sensor slaving to denote
using one wide field of view camera to control a second, active camera to zoom in and actively
follow the subject to generate a better view. The motivation is to keep track of all objects in the
scene while simultaneously gathering high-resolution views of selected objects. A camera slaving
system has at least one master camera and one slave camera. The master camera is set to have
a global view of the scene so that it can track objects over extended areas using simple tracking
methods such as adaptive background subtraction. The object trajectory generated by the master
camera is relayed to the slave camera in real time. The slave camera, which is highly zoomed in,
can then follow the trajectory to generate close-up imagery of the object.

Slaving is a relatively simple exercise if both cameras are calibrated with respect to a local
3D terrain model. We have shown in Section 4.3 that a person’s 3D trajectory can be determined
to reasonable accuracy (roughly 1 meter of error for a person 50 meters away) by intersecting
backprojected viewing rays with the terrain. After estimating the 3D location of a person from the
first camera’s viewpoint, it is an easy matter to transform the location into a pan-tilt command to
control the second camera. Figure 44 shows an example of camera slaving. A person has been
detected automatically in the wide-angle view shown in the left image, and a second camera has
been tasked to move slightly ahead of the person’s estimated 3D trajectory, as shown in the right
image.

For cameras located far apart geographically, it is obvious that we need to have very good cam-
era calibration, and an accurate 3D site model. We have also developed a sensor slaving method
that works for closely located cameras. This method requires only image-based computations (no
geolocation computation or extrinsic camera calibration). Furthermore, intrinsic parameters are
needed only by the slave camera, which has to determine the pan/tilt angles needed to point to-
wards each pixel in the image. The basic idea is to form a mosaic by warping the master camera
view into the pixel coordinate system of the slave camera view (Figure 45). Image trajectories of
objects detected in the master view can then be transformed into trajectories overlaid on the slave
camera view. The slave camera can then compute the pan-tilt angles necessary to keep the object
within its zoomed field of view.

Robotics Institute, CMU —-61- VSAM Final Report




Figure 44: Example of camera slaving. Left: wide-angle view in which a person is detected.
Right:a better view from a second camera, which has been tasked to intercept the person’s esti-
mated 3D path.

(a) v  ®

©

Figure 45: (a) and (b) are images taken from a slave camera and master camera, respectively. (c)
shows the master camera view warped into the pixel coordinate system of the slave camera view,
to form an image mosaic. Image pixels are averaged directly in overlapping region.

Robotics Institute, CMU -62~ VSAM Final Report




6 Three Years of VSAM Milestones

The current VSAM IFD testbed system and suite of video understanding technologies are the
end result of a three-year, evolutionary process. Impetus for this evolution was provided by a
series of yearly demonstrations. The following tables provide a succinct synopsis of the progress
made during the last three years in the areas of video understanding technology, VSAM testbed
architecture, sensor control algorithms, and degree of user interaction.

Although the program is over now, the VSAM IFD testbed continues to provide a valuable
resource for the development and testing of new video understanding capabilities. Future work
will be directed towards achieving the following goals:

e better understanding of human motion, including segmentation and tracking of articulated
body parts;

e improved data logging and retrieval mechanisms to support 24/7 system operations;
e bootstrapping functional site models through passive observation of scene activities;
e better detection and classification of multi-agent events and activities;

e better camera control to enable smooth object tracking at high zoom; and

e acquisition and selection of “best views” with the eventual goal of recognizing individuals
in the scene.

Robotics Institute, CMU - 63— VSAM Final Report




Table 3: Progression of Video Understanding Technology

Video Understanding | 1997 Demo Results | 1998 Demo Results | 1999 Demo Results ]

Ground-based Multiple target detection, Mutlti-target MTD and Layered and adaptive

moving target single target step and stare trajectory analysis, motion background subtraction for

detection (MTD) and | tracking, temporal change, salience via temporal robust detection, MTD while

tracking adaptive template matching | consistency, adaptive panning, tilting and zooming

background subtraction using optic flow and image

registration, target tracking by
multi-hypothesis Kalman filter

Airborne MTD and Stabilization / temporal Real-time camera pointing (N/A)

tracking change using correlation based on motion plus

appearance, drift free
fixation

Ground-based target
geolocation

Ray intersection with DEM

Ray intersection with
SEEDS model

Geolocation uncertainty
estimation by Kalman filtering,
domain knowledge

Airborne target
geolocation

Video to reference image
registration

Fine aiming using video to
reference image registration
in real-time

(N/A)

Target recognition

Temporal salience
(predicted trajectory)

Spatio-temporal salience,
color histogram,
classification

Target patterns and/or
spatio-temporal signature

Target classification
technique

Aspect ratio

Dispersedness,
motion-based
skeletonization, neural
network, spatio-temporal
salience

Patterns inside image chips,
spurious motion rejection,
model-based recognition, Linear
Discriminant Analysis

Target classification
categories

Human, vehicle

Human, human group,
vehicle

Human, human group, sedan,
van, truck, mule, FedEx van,
UPS van, police car

Target classification
accuracy (percentage
correctly identified)

87% Vehicle, 83% Human
(small sample)

85% (large sample)

> 90% (large sample)

Activity monitoring Any motion Individual target behaviors Multiple target behaviors:
parking lot monitoring, getting
in/out of cars, entering buildings

Ground truth None Off-line On-line (one target)

verification

Geolocation accuracy | 5 meters 2 meters < 1 meter

Camera calibration Tens of pixels Fives of pixels Ones of pixels

Domain knowledge Elevation map and SEEDS model used to Parking area, road network,

hand-drawn road network

generate ray occlusion tables
off-line

occlusion boundaries

Robotics Institute, CMU

— 64 —

VSAM Final Report




Table 4: Progression of VSAM Architecture Goals

[ VSAM Architecture | 1997 Demo Results | 1998 Demo Results | 1999 Demo Results |
Number of SPUs 3 8 12
Types of Sensors Standard video camera with | Standard video camera with | Static color and B/W cameras,
fixed focal length Zoom, omnicamera color video cameras with pan,

tilt and zoom, omnicamera,
thermal

Types of SPU and
VSAM nodes

Slow relocatable, airborne

Fast relocatable,
fixed-mount, airborne,
visualization clients

Super-SPU handling multiple
cameras, web-based VIS-node

System coverage

Rural, 0.1 km? area
ground-based, 3 km?
airborne coverage

University campus, 0.3 km?
area ground-based, airborne
coverage over 9 km? urban

arca

Dense coverage of university
campus, 0.3km? ground-based
area of interest

Communcation
architecture

Dedicated OCU/SPU

Variable-packet protocol

Table 5: Progression of VSAM Sensor Control

[ Sensor Control |

1997 Demo Results

l

1998 Demo Results

1999 Demo Results

|

Ground sensor aiming
(hand-off and
multitasking)

Predetermined handoff
regions

3D coordinates and
signatures, epipolar
constraints, occlusion and
footprint databases

Camera-to-camera handoff,
wide-angle slaving

target) with primitive
unsupervised behavior (look
for target)

(track activity) with
unsupervised behavior
(loiter detection)

Air sensor aiming Video to reference image Video to reference image (N/A)
registration for Jandmark registration for landmark
points points
Ground / Air Human-directed to OCU-directed to target (N/A)
interaction predetermined locations geolocation
SPU behavior Single supervised task (track | Single-task supervision Multi-task supervision for

activity monitoring and complex
unsupervised behavior (parking
lot monitoring)

Robotics Institute, CMU

— 65—

VSAM Final Report




Table 6: Progression of User Interaction

L User Interaction

1997 Demo Results

1998 Demo Results

1999 Demo Results

Site model

USGS orthophoto and DEM,
LIDAR, real-time mosaics

Compact Terrain DataBase
(CTDB), spherical mosaics,
aerial mosaic

Improved CTDB model

Site model function

Visualization and
geolocation

Off-line: Demo scenario
planning, after-action
review, algorithm
evaluation, ground-truth
verification. On-line:
Relocatable sensor planning
and geolocation, occlusion
analysis, target geolocation

Off-line: Sensor placement and
planning, virtual SPU for
scenario perturbation analysis.
On-line: Ground-truth
verification, dynamic
visualization and system tasking

System tasking by
user (user interface)

2D point-and-click camera
control for sensor-based
tasking

2D point-and-click camera
control for region and
target-based tasking.

Tracked-object specification, 3D
interactive activity and
event-based tasking

nodes

Visualization Overlay current target and Target and sensor ModStealth visualization of
sensor positions on information shown on GUI sensor network, video archiving
orthophoto, live video feeds | display, computer - | and replaying of significant

switchable live video feeds, | events
ModStealth
WebVSAM None Java-based visualization Indexed web access to activity

report, live internet access to
VSAM network via Web
visualization nodes

Robotics Institute, CMU

- 66—

VSAM Final Report




Acknowledgments

The authors would like to thank the U.S. Army Night Vision and Electronic Sensors Directorate
Lab team at Davison Airfield, Ft. Belvoir, Virginia for their help with the airborne operations. We
would also like to thank Chris Kearns and Andrew Fowles for their assistance at the Fort Benning
MOUT site, and Steve Haes and Joe Findley at BDM/TEC for their help with the the CTDB site
model and distributed simulation visualization software.

References

[1] C. Anderson, Peter Burt, and G. van der Wal. Change detection and tracking using pyramid
transformation techniques. In Proceedings of SPIE - Intelligent Robots and Computer Vision,
volume 579, pages 72-78, 1985.

[2] American Society of Photogrammetry ASP. Manual of Photogrammetry. Fourth Edition,
American Society of Photogrammetry, Falls Church, 1980.

[3] Y. Bar-Shalom and T. Fortmann. Tracking and data association. Academic Press, Boston,
1988.

[4] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. Inferna-
tional Journal of Computer Vision, 12(1):42-77, 1994.

[5] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion esti-
mation. In Proceedings of the European Conference on Computer Vision, 1992.

[6] K. Bradshaw, I. Reid, and D. Murray. The active recovery of 3d motion trajectories and
their use in prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(3):219-234, March 1997.

[7] R. Collins, Y. Tsin, J.R. Miller, and A. Lipton. Using a DEM to determine geospatial object
trajectories. In Proceedings of the 1998 DARPA Image Understanding Workshop, pages 115—
122, November 1998.

[8] R.T. Collins and Y. Tsin. Calibration of an outdoor active camera system. In Proceedings
of the 1999 Conference on Computer Vision and Pattern Recognition, pages 528-534. IEEE
Computer Society, June 1999.

[9] F. Dellaert and R.T. Collins. Fast image-based tracking by selective pixel integration. In
ICCV99 Workshop on Frame-Rate Applications, September 1999. '

[10] B.Flinchbaugh and T. Bannon. Autonomous scene monitoring system. In Proc. 10th Annual
Joint Government-Industry Security Technology Symposium. American Defense Prepared-
ness Association, June 1994,

Robotics Institute, CMU - 67— VSAM Final Report




[11] H. Fujiyoshi and A. Lipton. Real-time human motion analysis by image skeletonization. In
Proceedings of the 1998 Workshop on Applications of Computer Vision, 1998.

[12] Geometric Geodesy Branch GGB. Geodetic Survey. Publication SMWD3-96-022, Phase I,
Interim Terrain Data, Fort Benning, Georgia, May 1996.

[13] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time scene stabilization
and mosaic construction. In Proc. Workshop on Applications of Computer Vision, 1994.

[14] I. Haritaoglu, Larry S. Davis, and D. Harwood. W* who? when? where? what? a real time
system for detecing and tracking people. In FGR98, 1998.

[15] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density. In
Proceedings of the 1996 European Conference on Computer Vision, pages 343-356, 1996.

[16] Institute for Simulation & Training IST. Standard for Distributed Interactive Simulation —

Application Protocols, Version 2.0. University of Central Florida, Division of Sponsored
Research, March 1994.

[17] S. Ju, M. Black, and Y. Yacoob. Cardboard people: A parameterized model of articulated

image motion. In Proceedings of International Conference on Face and Gesture Analysis,
1996.

[18] T. Kanade, R. Collins, A. Lipton, P. Anandan, and P. Burt. Cooperative multisensor video
surveillance. In Proceedings of the 1997 DARPA Image Understanding Workshop, volume 1,
pages 3-10, May 1997.

[19] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson. Advances in cooperative multi-
sensor video surveillance. In Proceedings of the 1998 DARPA Image Understanding Work-
shop, volume 1, pages 3-24, November 1998.

[20] D. Koller, K. Daniilidis, and H. Nagel. Model-based object tracking in monocular image
sequences of road traffic scenes. International Journal of Computer Vision, 10(3):257-281,
June 1993.

[21] A. Lipton, H. Fujiyoshi, and R.S. Patil. Moving target detection and classification from real-
time video. In Proceedings of the 1998 Workshop on Applications of Computer Vision, 1998.

[22] Alan J. Lipton. Local application of optic flow to analyse rigid versus non-rigid motion. In
ICCV99 Workshop on Frame-Rate Applications, September 1999.

[23] T. Matsuyama. Cooperative distributed vision. In Proceedings of DARPA Image Understand-
ing Workshop, volume 1, pages 365-384, November 1998.

[24] H. S. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topology inference
and local to global alignment. In Proc. European Conference on Computer Vision, 1998.

Robotics Institute, CMU - 68 — VSAM Final Report




[25] H. S. Sawhney and R. Kumar. True multi-image alignment and its application to mosaicing
and lens distortion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
1997.

[26] C. Tomasi and T. Kanade. Shape and motion from image streams: factorization method.
International Journal of Computer Vision, 9(2), 1992.

[27] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice
of background maintenance. In Proc. International Conference on Computer Vision, pages
255-261, 1999.

[28] L. Wixson, J. Eledath, M. Hansen, R. Mandelbaum, and D. Mishra. Image alignment for
precise camera fixation and aim. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 1998.

[29] L. Wixson and A. Selinger. Classifying moving objects as rigid or non-rigid. In Proc. DARPA
Image Understanding Workshop, 1998.

[30] C. Wren, A. Azarbayejani, T. Darrell, and Alex Pentland. Pfinder: Real-time tracking of the
human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):780-
785, 1997.

Robotics Institute, CMU - 69— VSAM Final Report




Appendix

The following is a selection of the technical papers published by the CMU IFD team under this
contract.

1) Lipton, Fujiyoshi and Patil, ”"Moving Target Classification and Tracking from Real-time Video”
IEEE Workshop on Applications of Computer Vision (WACV), Princeton NJ, October 1998, pp.8-
14.

2) Fujiyoshi and Lipton, "Real-time Human Motion Analysis by Image Skeletonization” IEEE
Workshop on Applications of Computer Vision (WACV), Princeton NJ, October 1998, pp.15-21.

3) Collins and Tsin, ”Calibration of an Outdoor Active Camera System” IEEE Computer Vision
and Pattern Recognition (CVPR99), Fort Collins, CO, June 23-25, 1999, pp. 528-534.

4) Collins, Tsin, Miller and Lipton, "Using a DEM to Determine Geospatial Object Trajectories”,
Proc. DARPA Image Understanding Workshop, Monterey, CA, November 1998, pp. 115-122.

5) Dellaert and Collins, "Fast Image-Based Tracking by Selective Pixel Integration,” ICCV Work-
shop on Frame-Rate Vision, Corfu, Greece, September 1999.

6) Lipton, “Local Application of Optic Flow to Analyze Rigid versus Non-Rigid Motion”, ICCV
Workshop on Frame-Rate Vision, Corfu, Greece, September 1999.

7) Lipton, "Virtual Postman - Real-Time, Interactive Virtual Video”, IASTED CGIM, Palm Springs,
CA, October 1999.

Robotics Institute, CMU -70- VSAM Final Report




Moving target classification and tracking from real-time video

Alan J. Lipton

Hironobu Fujiyoshi

Raju S. Patil

The Robotics Institute. Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA, 15213
email: {ajl/hironobu|raju}@cs.cmu.edu
URL: http://www.cs.cmu.edu/” vsam

Abstract

This paper describes an end-to-end method for ex-
tracting moving targets from a real-time video stream,
classifying them into predefined categories according
to image-based properties, and then robustly tracking
them. Moving targets are detected using the pizelwise
difference between consecutive image frames. A classi-
ficatoin metric is applied these targets with a temporal
consistency constraint to classify them into three cat-
egories: human, vehicle or background clutter. Once
classified, targets are tracked by a combination of tem-
poral differencing and template matching.

The resulting system robustly identifies targets of
interest, rejects background clutter, and continually
tracks over large distances and periods of time despite
occlusions, appearance changes and cessation of target
motion.

1 Introduction

The increasing availability of video sensors and
high performance video processing hardware opens up
exciting possibilities for tackling many video under-
standing problems [1]. It is important to develop ro-
bust real-time video understanding techniques which
can process the large amounts of data attainable. Cen-
tral to many video understanding problems are the
themes of target classification and tracking.

Historically, target classification has been per-
formed on single images or static imagery [12, 13, 6].
More recently, however, video streams have been ex-
ploited for target detection [8, 14, 15]. Many meth-
ods like these, are computationally expensive and are
innaplicable to real-time applications, or require spe-
cialised hardware to operate in the real-time domain.
However, methods such as Pfinder [14], W* [8] and
Beymer et al [10] are designed to extract targets in
real-time.

The philosophy behind these techniques is the seg-
mentation of an image, or video stream, into object
vs. non-object regions. This is based on matching re-
gions of interest to reasonably detailed target models.
Another requirement of these systems is, in general, to
have a reasonably large number of pizels on target. For
both of these reasons, these methods would, by them-
selves, be inadequate in a general outdoor surveillance
system, as there are many different types of target
which could be important, and it is often not possible
to obtain a large number of pixels on target. A better
approach is one in which classification is based on sim-
ple rules which are largely independent of appearance
or 3D models. Consequently, the classification metric

which is explored in this paper, is based purely on a
target’s shape, and not on its image content.

Furthermore, the temporal component of video al-
lows a temporal consistency constraint {7] to be used
in the classification approach. Multiple hypotheses of
a target’s classification can be maintained over time
until the system is confident that it can accurately
classify the target. This allows the system to disam-
biguate targets in the case of occlusions or background
clutter.

Many systems for target tracking are based on
Kalman filters but as pointed out by [5], they are of
limited use because they are based on ummodal Gaus-
sian densities and hence cannot support simultaneous
alternative motion hypotheses. Isard and Blake [5]
present a new stochastic algorithm for robust track-
ing which is superior to previous Kalman filter based
approaches. Bregler [11] presents a probabilistic de-
composition of human dynamics to learn and recognize
human beings (or their gaits) in video sequences.

This paper presents a much simpler method based
on a combination of temporal differencing and im-
age template matching which achieves highly satis-
factory tracking performance in the presence of clut-
ter and enables good classification. Hence the use of
Kalman filtering or other probabilistic approaches is
avoided. Future work involves using temporal filter-
ing and building on some of the ideas presented in
[6] and [11] to achieve target recognition and multiple
target tracking.

Two of the basic methods for target tracking in real-
time video applications are temporal differencing (DT)
[2] and template correlation matching. In the former
approach, video frames separated by a constant time
dt are compared to find regions which have changed.
In the latter approach each video image is scanned
for the region which best correlates to an image tem-
plate. Independently, these methods have significant
shortcomings.

DT tracking is impossible if there is significant cam-
era motion, unless an appropriate image stabilisation
algorithm is employed [4]. It also fails if the target
becomes occluded or ceases its motion. Template cor-
relation matching generally requires that the target
object’s appearance remains constant. The method is
generally not robust to changes in object size, orien-
tation or even changing lighting conditions.

However, the tracking properties of these two meth-
ods are complementary. When the target is stationary,
template matching is at its most robust while DT will
fail. And when the target is in motion, DT will be suc-
cessful where template matching will tend to “drift”.




This is the motivation for combining the two methods.
The idea is to use DT to detect moving targets and
train the template matching algorithm. These targets
are then tracked using template matching guided by
the DT stage. This combination, obviates the need for
any predictive filtering in the tracking process as the
tracking is guided by motion detection. This simple
paradigm produces remarkably robust results.

This paper describes a system for robustly tracking
targets in a video stream and classifying the targets
into “humans” and “vehicles” for an outdoor video
surveillance application. Target tracking is based on
two main principles; (a} temporal consistency which
provides a robust way of classifying moving targets
while rejecting background clutter, and (b) the combi-
nation of motion detection with image-based template
matching which provides a highly robust target track-
ing scheme. Target classification is based on a sim-
ple application of maximum likelihood estimation af-
ter computing a simple shape based metric for each
target.

1.1 System Overview

Motion regions
i

Video

Target template

Motion regions
. i Tracked target

Figure 1: Overview of the identification and tracking
system. Mouving objects are detected in a video stream
using temporal differencing. Targets are then classified
according to a classification metric. These targets can
be tracked using a combination of motion information
and image based correlation

The system proposed in this paper consists of three
stages as outlined in figure 1. In the first stage, all
moving objects are detected using a temporal differ-
encing algorithm. These are described as motion re-
gions. Each one is classified at each time frame using
an image-based classification metric. Classifications
for each individual motion region are recorded over a
period of time, and a simple Maximum Likelihood Es-
timation (MLE) criterion is used to correctly classify

each target. Once a motion region has been classified,
it can be used as a training template for the track-
ing process. The tracking process involves correlation
matching between a template and the current video
image which is used to adaptively update the tem-
plate. However, this matching process is guided by
the DT stage to increase the likelihood that a target
will be correctly and robustly tracked.

2 Temporal differencing

There are many variants on the DT method, but
the simplest is to take consecutive video frames and
determine the absolute difference. A threshold func-
tion is then used to determine change. If I, is the

intensity of the nth frame, then the pixelwise differ-
ence function A, is

An = IIn - In—ll

and a motion image M, can be extracted by thresh-
olding

= §0 ;o2

Motion
region

Figure 2: Motion regions. Notice that much of the
background information is not incorporated into the
template.

After the motion image is determined, moving sec-
tions are clustered into motion regions R, (i). This is
done using a connected component criterion. Figure
2 shows the result of extracting motion regions.

3 Target Classification

There are two key elements to classifying targets;
some identification metric operator ID(z) which is
used for distinguishing between types of targets (in
this case, a very simple image-based metric is em-
ployed), and the notion of temporal consistency. If
a target persists over time, it is a good candidate for
classification. If not, it is considered to be background
clutter. At each instant, it is classified according to
ID(z). These classifications are collected until a sta-
tistical decision can be made about the classification
of the target. A version of MLE is used to make the
classification decision.

3.1 Temporal consistency

The main difficulty with classification is that in any
single frame, the instance of a particular motion region
may not be representative of it’s true character. For
example, a partly occluded vehicle may look like a hu-
man, or some background clutter may briefly appear
as a vehicle. To overcome this problem, a multiple
hypothesis approach is used. :




The first step in this process is to record all N, po-
tential targets P, (i) = R,(?) from some initial frame.
These regions are classified according to the classifica-
tion metric operator 1D(z) (see section 3.2) and the
result is recorded as a classification hypothesis (%) for

each one.
x(1) = {ID(Pa(4))}

Each one of these potential targets must be observed
in subsequent frames to determine whether they per-
sist or not, and to continue classifying them. So for
new frames, each previous motion region P,_1(%) is
matched to the spatially closest current motion re-
gion R, (j) according to a mutual proximity rule. Af-
ter this process, any previous potential targets P,_;
which have not been matched to current regions are
considered transient and removed from the list, and
any current motion regions R, which have not been
matched are considered new potential targets. At each
frame, their new classifications (according to the met-
ric operator) are used to update the classification hy-
pothesis.

x(i) = {x(} U{ID(P,(2))}

In this way, the statistics of a particular potential
target can be built up over a period of time until a
decision can be made about its correct classification.
Furthermore, transient motion regions such as trees
blowing in the wind will be thrown away.

3.2 Classification metric

X -

dispersedness : 61.8 dispersedness : 41.0

Figure 3: Typical dispersedness values for a human
and a vehicle.

To classify targets in real surveillance applications
it is important to use a classification metric which is
computationally inexpensive, reasonably effective for
small numbers of pizels on target, and invariant to
lighting conditions or viewpoint. It is clear that the
most obvious types of targets which will be of inter-
est are humans and vehicles [8, 9]. For this reason, a
classifier to detect these two groups has been imple-
mented. The metric is based on the knowledge that
humans are, in general, smaller than vehicles, and that
they have more complex shapes.

A bi-variate approach is employed, with the target’s
total area on one axis, and its dispersedness on the
other. Dispersedness is based on simple target shape
parameters and is given by

. Perimeter?
Dispersedness = ————
Area

Clearly, a human, with its more complex shape, will
have larger dispersedness than a vehicle - see figure 3.
Figure 4 shows the distribution of a training sample

180 T T T T T T T

Dispersedness

i
T

Vehicle

20 1 1 L 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Area

Figure 4: Bi-variate classification data for training
sample of over 400 tmages. Both linear and Maha-
lanobis clustering are shown.

of over 400 targets. Also, shown 1s a linear segmenta-
tion and a Mahalanobis distance-based segmentation
which provides a superior segmentation for classifica-
tion purposes.

3.3 Target classification

In this implementation, a simple application of
MLE is employed to classify targets. A classification
histogram is computed for each motion region at each
time and if the target persists for time ¢ ,,, the peak
of the histogram is used to classify the target. Further-
more, at every time instant after ¢ the object can
be reclassified.

One advantage of this method is that if an object is
temporarily occluded, it will not adversely affect the
ultimate classification. Figure 5 shows a situation in
which an object is originally misclassified because of
partial occlusion, but with the passage of time, the
classification statistics correctly reclassify it.

A further advantage of this method is that it is
robust to background clutter such as leaves blowing in
the wind. These effects appear as very transient and
unstable motion. It is unlikely that this motion will be
present long enough to be classified at all. If it does
persist, it is unlikely to be consistently misclassified
for a long period of time.

4 Tracking

Classified motion regions are then used as train-
ing templates for the tracker. Tracking consists of a
combination of appearance-based correlation match-
ing and motion detection.

Motion regions can be used to guide correlation
processing and template updating. This combination
makes the tracker robust to changes of target appear-
ance, occlusion, and cessation of target motion. The

class’




=2

Histogram
L
T T 1 T 1 T

Vehicle Human Other

Histogram

Vehicle Human Other

Histogram

Vehicle Human Other

Figure 5: Process of classification. Only after several
Jrames can this object be correctly identified.

procedure is outlined in figure 6. Candidate motion
regions R, (7) are selected and each of these are cor-
related with the current template R,,_; to find a best
match. This will not be sufficient, however, if the tar-
get has ceased its motion, so an extra region, called
R,(0), is also compared. R, (0) is made up of the pix-
els in I, which correspond to the location of R,_;.
That is, it is the part of the image in which the tar-
get used to be located. Once the best correlation has
been found from all of these candidates, it is merged
with R,,_; through an infinite impulse response (IIR)
filter (see section 4.0.1) to produce R,,. This is done
so that the appearance of the template continues to
match the appearance of the target.

Using the motion image to guide the template
matching algorithm carries with it some distinct ad-
vantages over conventional techniques. Correlation
matching is the most computationally expensive part
of the tracking algorithm; if the correlation matching
need only be performed where moving targets are de-
tected, computation time can be reduced. Also, if cor-
relation matching is biased towards areas where mo-
tion is detected, it is more likely to retain the target
and not “drift” on to the background. Furthermore,
if updating the content of the template is combined
with the motion function then templates can be con-
structed which only contain “active” pixels and do not
contain background information.

4.0.1 Updating templates

In this implementation, adaptive template updating
is used to ensure that the current template accurately
represents the new image of the object. So the new
template R, is generated by merging the previous in-
stance R,_; with current information from M, and

HR Filter

©

Figure 6: The tracking process. (a) There are four
target candidates — three moving targets and the pre-
vious template position. (b) The current template is
compared to each of the candidates. (c) The current
template is updated using an IIR filter.

I, using an infinite impulse response filter of the form
R,=aM, + (1 -a)R,_1
The effect of the IIR filter is shown in figure 7.

= 21 37

Figure 7: The IIR filter. As the image changes from a
Jace in profile to a frontal view, the template is updated
using an IIR. If the image is stable for some time, the
template also remains stable.

One problem with DT motion detection is that it
tends to include undesirable background regions on
the periphery of the target where the object has “just
been”. Large amounts of this background information
in the template is one of the causes of template “drift”.
One way to alleviate this problem is to use knowledge
of the target’s motion to crop these background re-
gions from the template.




The 2D image velocity vector of the target
(&, )(pixels/frame) can be approximately determined
by calculating the difference between the centroid of
the previous template R,_1 and the centroid of the
new template R,. It can be assumed that the region
trailing the template is background material exposed
by the passage of the target. This information can
be cropped from R, so that it contains mostly target
pixels (see figure 8).

YOO

Tty Y 1 \

Figure 8: Motion cropping. As the target moves, back-
ground information is included in the new template.
Knowledge of the target’s motion is used for cropping.

5 Results

The system has been implemented on a Pentium
200Mhz system under Microsoft Windows 95 with
a Matrox Meteor digitiser. The system can detect,
classify and track targets at 14 frames/second over a
320 x 240 pixel image. The system has been applied
to large amounts of live video in unstructured envi-
ronments in which human and vehicular activity is
present. Over six hundred instances of vehicles and
humans have been identified and target tracking has
been performed over the life span of over two hundred
targets.

5.1 Classification

Figure 9 shows some examples of target classifica-
tion. For single targets, this algorithm provides a ro-
bust classification. Note that trees blowing in the wind
are correctly rejected as background clutter. Further-
more, accurate classification is largely independent of
target size, speed or viewing aspect. However, when
multiple human targets are close together, they can be
misclassified as a vehicle. There are two reasons for
this; the clustering of the motion regions is too liberal
in this case, erroneously joining multiple regions, and
the classification metric is not sophisticated enough
to deal with this situation. Another limitation is that
targets which are very small (< 5 x 5 pixels) tend to
be temporally inconsistent and hence rejected.

Table 1 shows the results of the classification algo-
rithm applied to over four hours of live video in an
unstructured environment. The main problem with
vehicle recognition is that when vehicles are partially
occluded for long times, they are sometimes rejected.
Humans are much smaller than vehicles and are of-
ten not recognised as temporally stable objects. Also,
humans tend to move in close groups that can be mis-
classified as vehicles according to the simple metric.

VEHICLE

e

HUMAN REJECT REJECT

Figure 9: Example of target classification. Notice that
groups of people can be misclassified as a vehicle.

[[ Target ][ Tot. | Unclass. | Misclass. | Correct ||
Vehicle [ 319 | 10.7% 2.5% 86.8%
Human || 291 | 11.0% 6.2% 82.8%
False 4

Table 1: Classification results from live video in un-
structured environments.

5.2 Tracking

In figure 10 a vehicle is tracked as it drives around
a test site. In figures 10(b)-(c) other visibly similar
targets are present, but the template tracking does
not stray because it is guided by the motion regions.
Even when the target is partially occluded by a similar
target, the tracker remains stable. The target can be
tracked over long distances and periods of time (x 2
mins. - the life span of the target), even as it becomes
small. In figure 10(d) it is only 4 x 9 pixels.

In figure 11 two humans are detected and one of
them is tracked. Over the life span of these targets
(~ 4 mins.), the tracker does not confuse them, even
when one occludes the other, because the template
matching algorithm “prefers” the correct target over
a false one.

6 Conclusions

The two key elements which make this system ro-
bust are the classification system based on temporal
consistency and the tracking system based on a combi-
nation of temporal differencing and correlation match-
ing. The system effectively combines simple domain
knowledge about object classes with time-domain sta-
tistical measures to classify target objects. Target
models are simple and based purely on target shape
so they are applicable to a large number of real-world




© @

Figure 10: Identification and tracking of a vehicle. A
vehicle is classified and tracked as it drives for about
2 mins.

video applications. Using a combination of domain
knowledge and temporal consistency, targets are ro-
bustly identified in spite of partial occlusions and am-
biguous poses, and background clutter is effectively
rejected.

Using temporal differencing to guide vision-based
correlation matching has three main advantages; it al-
lows continuous tracking despite occlusions and ces-
sation of target motion, it prevents templates “drift-
ing” onto background texture, and it provides robust
tracking without the requirement of having a predic-
tive temporal filter such as a Kalman filter.

References

[1] T. Kanade, R. Collins, A. Lipton, P. Anandan,
P. Burt “Cooperative Multisensor Video Surveil-
lance” Proceedings of DARPA Image Understand-
ing Workshop 1997, Vol. 1, pp. 3-10, 1997.

[2] C. Anderson, P. Burt, G. van der Wal “Change de-
tection and tracking using pyramid transformation
techniques” SPIE - Intelligent Robots and Com-
puter Vision Vol. 579, pp. 72-78, 1985

[3] A. Lipton, H. Fujiyoshi, R. Patil “Moving target
detection and classification from real-time video”
submitted to IEEE WACYV 98, 1998.

[4] M. Hansen, P. Anandan, K. Dana, G. van der Wal,
P. Burt “Real-time scene stabilization and mosaic
construction” Proceedings of DARPA Image Un-
derstanding Workshop 1994, 1994

[5] M. Isard and A. Blake “Contour tracking by
stochastic propagation of conditional density” Pro-
ceedings of Furopean Conf. on Computer Vision
96, pp. 343-356, 1996

[6] K. Ikeuchi, T. Shakunaga, M. Wheeler, T. Ya-
mazaki “Invariant histograms and deformable tem-
plate matching for SAR target recognition” Pro-
ceedings of IEEE CVPR 96, pp. 100-105, 1996

[7] J. Davis, A. Bobick “The representation and recog-
nition of human movement using temporal tem-
plates” Proceedings of IEEE CVPR 97, pp. 928 -
934, 1997

©) @

Figure 11: Identification and tracking of human tar-
gets. Two humans are correctly classified and one of
them is tracked for about 8 mins.

[8] 1. Haritaoglu, D. Harwood, L. S. Davis “W* Who?
When? Where? What? A Real Time System for
Detecing and Tracking People” FGR98 submitted,
1998

[9] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T.
Poggio “Pedestrian detection using wavelet tem-
plates” Proceedings of IEEE CVPR 97, pp. 193-
199, 1997

[10] D. Beymer, P. McLauchlan, B. Coifman, and J.
Malik “A real-time computer vision system for
measuring traffic parameters” Proceedings of IEEE
CVPR 97, pp. 495-501, 1997

[11] C. Bregler “Learning and recognizing human dy-
namics in video sequences” Proceedings of IEEE
CVPR 97, pp. 568-574, 1997

[12] R. kastur1 and R. C. Jain “Computer Vision;
Principles” IEEE Computer Society Press, 1991

[13] M. Turk, A. Pentland “Eigenfaces for recogni-
tion.” Journal of Cognitive Neuroscience , 3, 1,
71-86, 1991.

[14] C. Wren, A. Azarbayejani, T. Darrell, A. Pent-
land “Pfinder: Real-Time Tracking of the Hu-
man Body” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence July 1997, vol 19, no
7, pp. 780-785

[15] D. Koller, K. Danilidis, H.-H. Nagel “Model-
Based Object Tracking in Monocular Image Se-
quences of Road Traffic Scenes” International
Journal of Computer Vision, 10-3, pp. 257-281,
1993




User: root

Document: dfA160biscuit.1us.cs.cmu
Server: SHASTA

Time: 05/01/00 10:40:19

Pages requested: 6

Page size: Letter




Real-time human motion analysis by image skeletonization

Hironobu Fujiyoshi

Alan J. Lipton

The Robotics Institute. Carnegie Mellon University.
5000 Forbes Avenue, Pittsburgh, PA, 15213
email: {hironobulajl}@cs.cmu.edu
URL: http://www.cs.cmu.edu/” vsam

Abstract

In this paper, a process is described for analysing
the motion of a human target in a video stream. Mov-
ing targets are detected and their boundaries extracted.
From these, a “star” skeleton is produced. Two mo-
tion cues are determined from this skeletonization:
body posture, and cyclic motion of skeleton segments.
These cues are used to determine human activities
such as walking or running, and even potentially, the
target’s gait. Unlike other methods, this does not re-
quire an a priori human model, or a large number of
“pizels on target”. Furthermore, it is computationally
inezpensive, and thus ideal for real-world video appli-
cations such as outdoor video surveillance.

1 Introduction

Using video in machine understanding has recently
become a significant research topic. One of the more
active areas is activity understanding from video im-
agery [7]. Understanding activities involves being able
to detect and classify targets of interest and analyze
what they are doing. Human motion analysis is one
such research area. There have been several good hu-
man detection schemes, such as [8] which use static
imagery. But detecting and analyzing human motion
in real time from video imagery has only recently be-
come viable with algorithms like Pfinder [10] and W*
[6]. These algorithms represent a good first step to
the problem of recognizing and analyzing humans, but
they still have some drawbacks. In general, they work
by detecting features (such as hands, feet and head),
tracking them, and fitting them to some a priori hu-
in]an model such as the cardboard model of Ju et al
6].

There are two main drawbacks of these systems in
their present forms: they are completely human spe-
cific, and they require a great deal of image-based in-
formation in order to work effectively. For general
video applications, it may be necessary to derive mo-
tion analysis tools which are not constrained to human
models, but are applicable to other types of targets,
or even to classifying targets into different types. In
some real video applications, such as outdoor surveil-
lance, it is unlikely that there will be enough “pixels on
target” to adequately apply these methods. What is
required is a fast, robust system which can make broad
assumptions about target motion from small amounts
of image data.

This paper proposes the use of the “star” skele-
tonization procedure for analyzing the motion of tar-
gets - particularly, human targets. The notion is that
a simple form of skeletonization which only extracts
the broad internal motion features of a target can be
employed to analyze its motion.

Once a skeleton is extracted, motion cues can be
determined from it. The two cues dealt with in this
paper are: cyclic motion of “leg” segments, and the
posture of the “torso” segment. These cues, when
taken together can be used to classify the motion of
an erect human as “walking” or “running”.

This paper is organized as follows: section 2 de-
scribes how moving targets are extracted in real-time
from a video stream, section 3 describes the processing
of these target images and section 4 describes human
motion analysis. System analysis and conclusions are
presented in sections 5 and 6.

2 Real-time target extraction

The initial stage of the human motion analysis
problem is the extraction of moving targets from
a video stream. There are three conventional ap-
proaches to moving target detection: temporal dif-
ferencing (two-frame or three-frame) [1], background
subtraction [5, 10] and optical flow (see [2] for an excel-
lent discussion). Temporal differencing 1s very adap-
tive to dynamic environments, but generally does a
poor job of extracting all relevant feature pixels. Back-
ground subtraction provides the most complete fea-
ture data, but is extremely sensitive to dynamic scene
changes due to lighting and extraneous events. Optical
flow can be used to detect independently moving tar-
gets in the presence of camera motion, however most
optical flow computation methods are very complex
and are inapplicable to real-time algorithms without
specialized hardware.

The approach presented here is similar to that
taken in [5] and is an attempt to make background
subtraction more robust to environmental dynamism.
The notion is to use an adaptive background model to
accommodate changes to the background while main-
taining the ability to detect independently moving tar-
gets.

Consider a stabilized video stream or a stationary
video camera viewing a scene. The returned image
stream is denoted I, where n is the frame number.
There are four types of image motion which are sig-
nificant for the purposes of moving target detection:
slow dynamic changes to the environment such as
slowly changing lighting conditions; “once-off” inde-
pendently moving false alarms such as tree branches
breaking and falling to the ground; moving environ-
mental clutter such as leaves blowing in the wind; and
legitimate moving targets.

The first of these issues is dealt with by using a sta-
tistical model of the background to provide a mech-
anism to adapt to slow changes in the environment.

For each pixel value p, in the nt* frame, a running




average P,, and a form of standard deviation o, are
maintained by temporal filtering. Due to the ﬁliering
process, these statistics change over time reflecting dy-
namism in the environment.

The filter is of the form

F(t) = ot (1)

where 7 is a time constant which can be configured to
refine the behavior of the system. The filter is imple-
mented:

_ Py = O‘pn-i-l_'|' (1-a)p, _ (2)
Ont1 = O‘lpn+1 - Pn+1| +(1- Ot)O’n

where & = 7 x f, and f is the frame rate. Unlike
the models of both [5] and [10], this statistical model
incorporates noise measurements to determine fore-
ground pixels, rather than a simple threshold. This
1dea is inspired by [4].

If a pixel has a value which is more than 2¢ from
P, then it is considered a foreground pixel. At this
point a multiple hypothesis approach is used for de-
termining its behavior. A new set of statistics (p’, o”)
is initialized for this pixel and the original set is re-
membered. If, after time ¢ = 37, the pixel value has
not returned to its original statistical value, the new
statistics are chosen as replacements for the old.

“Moving” pixels are aggregated using a connected
component approach so that individual target regions
can be extracted. Transient moving objects will cause
short term changes to the image stream that will not
be included in the background model, but will be
continually tracked, whereas more permanent changes
will (after 37) be absorbed into the background.

3 Target pre-processing

No motion detection algorithm is perfect. There
will be spurious pixels detected, holes in moving fea-
tures, “interlacing” effects from video digitization pro-
cesses, and other anomalies. Foreground regions are
initially filtered for size to remove spurious features,
and then the remaining targets are pre-processed be-
fore motion analysis is performed.

3.1 Pre-processing

The first pre-processing step is to clean up anoma-
lies in the targets. This is done by a morphological di-
lation followed by an erosion. This removes any small
holes in the target and smoothes out any interlacing
anomalies. In this implementation, the target is di-
lated twice followed by a single erosion. This effec-
tively robustifies small features such as thin arm or
leg segements.

After the target has been cleaned, its outline is ex-
tracted using a border following algorithm. The pro-
cess is shown in figure 1.

3.2 “Star” skeletonization

An important cue in determining the internal mo-
tion of a moving target is the change in its boundary
shape over time and a good way to quantify this is to
use skeletonization. There are many standard tech-
niques for skeletonization such as thinning and dis-
tance transformation. However, these techniques are

Moving target

X

binarization

)

Border extraction

\
Dilation
(twice) Erosion
—_— —_—

Figure 1: Target pre-processing. A moving target re-
gion is morphologically dilated (twice) then eroded.
Then its border is extracted.

computationally expensive and moreover, are highly
susceptible to noise in the target boundary. The
method proposed here provides a simple, real-time, ro-
bust way of detecting extremal points on the boundary
of the target to produce a “star” skeleton. The “star”
skeleton consists of only the gross extremities of the
target joined to its centroid in a “star” fashion.

O.end

CJ

distance,

centroid ————s

distance d(i)

<

e border position

b c
"star” sketeton of the shape

0
o
distance (i)
=
o
-
o

Figure 2: The boundary is “unwrapped” as a dis-
tance function from the centroid. This function is then
smoothed and extremal points are extracted.

1. The centroid of the target image boundary
(z¢, yc) is determined.

. ; 3
yc:NLbZ?QHyi ®)

where (., y.) is the average boundary pixel po-
sition, /Ny is the number of boundary pixels, and
(#:,9:) is a pixel on the boundary of the target.

2. The distances d; from the centroid (z., y.) to each
border point (z;,y;) are calculated

di = /(i — 2e)? + (%5 — ye)? (4)




These are expressed as a one dimensional discrete
function d(i) = d;. Note that this function is
periodic with period Np.

3. The signal d(i) is then smoothed for noise reduc-

tion, becoming d(i). This can be done using a
linear smoothing filter or low pass filtering in the
Fourier domain.

4. Local maxima of d(i) are taken as extremal
points, and the “star” skeleton is constructed by
connecting them to the target centroid (z.,y.).
Local maxima are detected by finding zero-
crossings of the difference function

5(i) = d(i) —d(i— 1) (5)

This procedure for producing “star” skeletons is illus-
trated in figure 2.

3.3 Advantages of “star” skeletonization

There are three main advantages of this type of
skeletonization process. It is not iterative and is,
therefore, computationally cheap. It also explicitly
provides a mechanism for controlling scale sensitivity.
Finally, it relies on no a priori human model.

The scale of features which can be detected is di-
rectly configurable by changing the cutoff frequency ¢
of the low-pass filter. Figure 3 shows two smoothed
versions of d(z) for different values of ¢: ¢ = 0.01 x N,
and ¢ = 0.025 x Np. For the higher value of ¢, more de-
tail is included in the “star” skeleton because more of
the smaller boundary features are retained in d(¢). So
the method can be scaled for different levels of target
complexity.

An interesting application of this scalability is the
ability to measure the complexity of a target by ex-
amining the number of extremal points extracted as a
function of smoothing.

Other analysis techniques [10, 6, 5], require a pri-
ori models of humans — such as the cardboard model
in order to analyze human activities. Using the skele-
tonization approach, no such models are required, so
the method can be applied to other objects like ani-
mals and vehicles (see Figure 4). It is clear that the
structure and rigidity of the skeleton are important
cues in analysing different types of targets. However,
in this implementation, only human motion is consid-
ered. Also, unlike other methods which require the
tracking of specific features, this method uses only
the object’s boundary so there is no requirement for a
large number of “pixels on target”.

4 Human motion analysis

One technique often used to analyze the motion
or gait of an individual target is the cyclic motion
of skeletal components [9]. However, in this imple-
mentation, the knowledge of individual joint positions
cannot be determined in real-time. So a more funda-
mental cyclic analysis must be performed.

Another cue to the gait of the target is its posture.
Using only a metric based on the “star” skeleton, it is
possible to determine the posture of a moving human.

DFT spectrum

Original signal °

S 2
3 H
3

E
g £
8y

10

S0 50 100 150 200 250 00 0 40 6 80 00 120

Border position e Channels n Nz
¢=0.025
c=001
c¢=001
3
Smoothed signal |

Distance (i)
3

%

Extremal points : 3

%

Extremal points : §

0 50 100 150 200

FE

Border position i

Smoothed signal 2

Distance (i)

) i 150 20 250
N
Border position

Figure 3: Effect of cut-off value c. When c is small
only gross features are extracted, but larger values of
¢ detect more extremal points.

4.1 Significant features of the “star”

skeleton

For the cases in which a human is moving in an
upright position, it can be assumed that the lower
extremal points are legs, so choosing these as points to
analyze cyclic motion seems a reasonable approach. In
particular, the left-most lower extremal point (I;,1,) is
used as the cyclic point. Note that this choice does not
guarantee that the analysis is being performed on the
same physical leg at all times, but the cyclic structure
of the motion will still be evident from this point’s
motion. If {(zf,y;)} is the set of extremal points,
(Iz,1y) is chosen according to the following condition:

(losly) = @5,4) = af = minsf  (6)

Then, the angle (I;,1,) makes with the vertical 6 is
calculated as
—1 Iy — .

ly —ye
Figure 5(a) shows the definition of (I,l,) and 6.
One cue to determining the posture of a moving

human is the inclination of the torso. This can be
approximated by the angle of the upper-most extremal

(7)




motion detection skeleton

I
T %

{a) Human

video image

N Y,
(b) Vehicle

e ~
", _\n.

\ J

(c) Polar bear

Figure 4: Skeletonization of different moving targets.
It s clear the structure and rigidity of the skeleton is
significant in analyzing target motion.

- —

(a) ®)

Figure 5: Determination of skeleton features. (a) 6
is the angle the left cyclic point (leg) makes with the
vertical, and (b) ¢ is the angle the torso makes with
the vertical.

point of the target. This angle ¢ can be determined
in exactly the same manner as 6. See figure 5(b).

Figure 6 shows human target skeleton motion se-
quences for walking and running and the values of 4,
for the cyclic point. These data were acquired in real-
time from a video stream with frame rate 8Hz. This
value is not a constant in this technique but depends
on the amount of processing which is required to per-
form motion analysis and target pre-processing.

Note that in figure 6(c), there is an offset in the
value of 6, in the negative direction. This is because
only the leftmost leg (from a visual point of view)
is used in the calculation and the calculation of § is
therefore biased towards the negative. There is also
a bias introduced by the gait of the person. If s/he
is running, the body tends to lean forward, and the
values of 6, tend to reflect this overall posture. An-
other feature which can clearly be observed is that the
frequency of the cyclic motion point is clearly higher

0.125 [sec]
-+

v

frame —»

AL AALT LA
|

3 4 5 6 10

8 9
11 12 13 14 15 16 17 18 19 20
(a) skeleton motion of a walking person

BUAR LML

N N

11 12 13 14

(b) skeleton motion of a running person

—ptn
N gt

]
=)

|¢<L[rad

e

0 5 10, 15 20 25
frame

(e) torso angle¢ of a walking person (f) torso angle ¢ of a running person

Figure 6: Skeleton motion sequences. Clearly, the pe-
riodic motion of 8, provides cues to the target’s mo-

tion as does the mean value of §,,.

in the case of the running person, so this can be used
as a good metric for classifying the speed of human
motion. _

Comparing the average values ¢, in figures 6(e)-(f)
show that the posture of a running target can easily
be distinguished from that of a walking one using the
angle of the torso segment as a guide.

4.1.1 Cycle detection

Figures 6(c)-(d) display a clear cyclical nature in 4,.
To quantify these signals, it is useful to move into
the Fourier domain. However, there is a great deal
of signal noise, so a naive Fourier transform will not
yield useful results - see figure 7(b). Here, the power
spectrum of 8, shows a great deal of background noise.

To emphasize the major cyclic component, an auto-
correlation is performed on 6, providing a new signal
R;.

N

1
Ri = _N F1—4 r; 0n6n—i (8)




L5

1.0 100
05 —
N )
3,200
B My i
0.5 ¥ vyt g
-1.0 & 300
s 2 40 50 60 ’ | |' H l I
o 10 oF 30 5 400 1 il
rame 0 125 25 375
(@) Original signal Frequency [Hz]
®)
1.5 10.0
10, , _
- 0.5 @-200
o i s
0.0 A~ 2
o
0.5 A -30.0
10 !
s w00 Laatleulllh s
[ Pr hasi | T 0 10 20 30 40 S0 60 0 125 25 375
Frame Frequency [Hz)
© (d)
13 Ls 100
1.0 1.0 —_
05 0.5 g-zo.o’ p
i St
o
0.5 0.5 & .300"
fLILMI
.15 15 _40‘0:| ||||I” L
T 0 10 20 30 40 50 60 70 10 20 30 40 50 60 0 125 25 375
Frame Frame Frequency [Hz]
© ® ®

Figure 7: Process for detecting cyclic motion.

w(here N is number of frames. This is shown in figure
7(c).

’)I‘his autocorrelation process introduces a new
source of noise due to the bias (or DC component)
of the 8, signal. When low frequency components are
autocorrelated, they remain in the signal and show
up in the power spectrum as a large peak in the low
frequencies with a degeneration of 6 [dB/oct] in the
case of figure 7(d). To alleviate this problem, a high
frequency pre-emphasis filter H(z) is applied to the
signal before autocorrelation. The filter used is:

H(z)=1-az! (9)

with a chosen empirically to be = 1.0. This yields the
figure shown in figure 7(e).

Finally, figure 7(g) shows that the major cyclic com-
ponent of the cyclic point can be easily extracted from
the power spectrum of this processed signal.

5 Analysis

This motion analysis scheme has been tried on a
database of video sequences of people walking and run-
ning. There are approximately 20 video sequences in
each category, with pixles on target ranging from ~ 50
to ~ 400. The targets are a mixture of adults and
children. The end-to-end process of MTD, target pre-
processing, and motion analysis was performed on an
SGI 02 machine containing an R10000 1756Mhz pro-
Cessor.

Figure 8 shows histograms of the peaks of the power
spectrum for each of the video streams. It is clear
from figure 8(a) that the low frequency noise would
cause a serious bias if motion classification were at-
tempted. However, figure 8(b) shows how effective
the pre-emphasis filter is in removing this noise. It
also shows how it is possible to classify motion in
terms of walking or running based on the frequency
of the cyclic motion. The average walking frequency
is 1.75[Hz] and for running it is 2.875[Hz]. A Thresh-
old frequency of 2.0[Hz] correctly classifies 97.5% of
the target motions. Note that these frequencies are
twice the actual footstep frequency because only the
visually leftmost leg is considered. Another point of
interest is that the variance of running frequencies is
greater than that of walking frequencies, so it could be
possible to classify different “types” of running such
as jogging or sprinting. For each video sequence, the
average inclination ¢ of the upper extremal point {or
torso) was determined. These values are shown in fig-
ure 9. It can be seen that the forward leaning of a
running figure can be clearly distinguished from the
more vertical posture of a walking one. A threshold
value of 0.15[rads] correctly classifies 90% of the target
motions.

6 Conclusion

Analyzing human motion for video applications is
a complex problem. Real-world implementations will
have to be computationally inexpensive and be ap-




Walking
EEE Running

Cyclic motion histogram

il

1.25 1.875 25 3.125 375
Frequency [Hz]
(a) Autocorrelation + DFT

; Walking
8 ] WM Running

Cyclic motion histogram

0 0.625 1.25 1.875 25 3.125 375
Frequency [Hz}

(b) Pre-emphasis + Autocorrelation + DFT

Figure 8: Histogram of cyclic motion frequency peaks.
(a) The bias in 6, often produces a frequency peak
which is significantly higher than the peak produced by
cyclic motion. (b) The pre-emphasis filter effectively
removes this noise.

plicable to real scenes in which targets are small and
data is noisy. The notion of using a target’s boundary
to analyze its motion is a useful one under these con-
ditions. Algorithms need only be applied to a small
number of pixels and internal target detail, which may
be sketchy, becomes less important.

This paper presents the approach of “star” skele-
tonization by which the component parts of a tar-
get with internal motion may easily, if grossly, be ex-
tracted. Further, two analysis techniques have been
investigated which can broadly classify human motion.
Body inclination can be measured from the “star”
skeleton to determine the posture of the human, which
derives clues as to the type of motion being executed.
In addition, cyclic analysis of extremal points provides
a very clean way of broadly distinguishing human mo-
tion in terms of walking and running and potentially
even different types of gait.

In the future, this analysis technique will be ap-
plied to more complex human motions such as crawl-
ing, jumping, and so on. It may even be applied to
the gaits of animals.

or Walking 1
I Running

Torso angle histogram

0 005 01 0I5 02 025 03 035 04 045 05
¢ [rad]

Figure 9: Average inclination histogram of torso for
classification.

References

[1] C. Anderson, P. Burt, G. van der Wal “Change de-
tection and tracking using pyramid transformation
techniques” SPIE - Intelligent Robots and Com-

uter Vision Vol. 579, pp. 72-78, 1985

[2] J. Barron, D. Fleet, S. Beauchemin “Performance
of Optical Flow Techniques” International Journal
of Computer Vision, Vol. 12, no. 1, pp. 42-77, Jan.
1994

[3] J. Davis, A. Bobick “The representation and recog-
nition of human movement using temporal tem-
plates” Proceedings of IEEE CVPR 97, pp. 928 -
934, 1997

[4] E. Grimson, P. Viola “A Forest of Sensors”
DARPA - VSAM workshop, Nov. 1997

[5] I. Haritaoglu, D. Harwood, L. S. Davis “W* Who?
When? Where? What? A Real Time System for
Detecting and Tracking People” FGR98 submitted,

1998

[6] S. Ju, M. Black, Y. Yacoob “Cardboard People:
A Parameterized Model of Articulated Image Mo-
tion” International Conference on Face and Ges-
ture Analysis, 1996

[7] T. Kanade, R. Collins, A. Lipton, P. Anandan,
P. Burt “Cooperative Multisensor Video Surveil-
lance” Proceedings of DARPA Image Understand-
ing Workshop 1997, Vol. 1, pp. 3-10, 1997.

[8] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T.
Poggio “Pedestrian detection using wavelet tem-
plates” Proceedings of IEEE CVPR 97, pp. 193-
199, 1997

[9] P. 'i‘sai, M. Shah, K. Ketter, T. Kasparis “Cyclic
motion detection for motion based recognition”
Pattern Recognition, Vol. 27, No. 12, pp. 1591-
1603, 1994

[10] C. Wren, A. Azarbayejani, T. Darrell, A. Pent-
land “Pfinder: Real-Time Tracking of the Hu-
man Body” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence July 1997, vol 19, no
7, pp- 780-785




Calibration of an Outdoor Active Camera System *

Robert T. Collins and Yanghai Tsin
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 15213
Email: {rcollins,ytsin}cs.cmu.edu

Abstract

A parametric camera model and calibration procedures
are developed for an outdoor active camera system with
pan, tilt and zoom control. Unlike traditional methods, ac-
tive camera motion plays a key role in the calibration pro-
cess, and no special laboratory setups are required. Intrin-
sic parameters are estimated automatically by fitting para-
metric models to the optic flow induced by rotating and
zooming. No knowledge of 3D scene structure is needed.
Extrinsic parameters are calculated by actively rotating
the camera to sight a sparse set of surveyed landmarks
over a virtual hemispherical field of view, yielding a well-
conditioned pose estimation problem.

1. Introduction

This paper develops a parametric projection model for
the intrinsic (lens) and extrinsic (pose) parameters of a cam-
era with active pan, tilt and zoom control. Calibration pro-
cedures are presented for estimating intrinsic parameters by
fitting parametric models to the optic flow induced by rotat-
ing and zooming the camera. These calibration procedures
are fully automatic and require no precise knowledge of 3D
scene structure. We do not assume any special distribution
of features in the world (e.g. a well-distributed set of dis-
tinctive corners or straight lines). Extrinsic parameters are
calculated by sighting a sparse set of measured landmarks
in the scene. Actively rotating the camera to measure land-
marks over a virtual hemispherical field of view leads to a
well-conditioned pose estimation problem.

The calibration procedures are specifically designed for
in-situ (meaning “in place”) camera calibration, as opposed
to pre-calibrating the camera in a laboratory and then car-
rying it elsewhere. We believe that all cameras should be
calibrated in an environment that resembles their actual op-
erating conditions. This philosophy is particularly relevant
for outdoor camera systems. Cameras get jostled during
transport and installation, and changes in temperature and

*Funded by DARPA VSAM contract DAAB07-97-C-J031.

humidity can affect a camera’s intrinsic parameters. Fur-
thermore, it is impossible to recreate the full range of zoom
and focus settings that are useful to an outdoor camera sys-
tem within the confines of an indoor lab.

Unfortunately, outdoors is not an ideal environment for
careful camera calibration. It can be cold, rainy, or other-
wise unpleasant. Simple calibration methods are needed
that can be performed with minimal human intervention.
The active calibration procedures presented here fit this de-
scription.

2. Active Camera Model

In this section we develop a camera projection model for
a camera with active pan, tilt and zoom. The model is a gen-
eralization of the well-known Tsai camera model [12]. We
choose the Tsai model as a basis since it is representative of
the vast majority of camera models used in computer vision
and robotics research. Development of the model has relied
heavily on the work of Willson [13, 14].

Although our active camera model is meant to apply
to a broad class of pan-tilt-zoom cameras, the target cam-
era platform is a Sony EVI-370 camera mounted on a Di-
rected Perception (DP) PTU-46-70 pan-tilt unit. The EVI-
370 spec sheet reports a 12X zoom (see Figure 1) divided
into 1024 discrete zoom settings with a horizontal field of
view of approximately 48.8 degrees at zoom setting 0 and
4.3 degrees at zoom setting 1023. The DP pan-tilt head has
a resolution of 0.771 arc minutes over a pan angle range of
318 degrees and tilt range of 78 degrees.

Figure 1. Example of Sony EVI-370 12X zoom.




Extrinsic Parameters:

The extrinsic camera equation is a kinematic chain repre-
senting the transformation of a scene point (X,,,Y,,,Z,) into
the same point (X.,Y;,Z;) specified in a camera-centered
coordinate system.

XC Xw Tx
Yo | =RaRoRR(| Y [—| T, |) (D
Z Zy, I

where T = (T;,T;,T;) specifies the scene location of the
camera focal point, R is the scene orientation of the pan-
tilt unit when pan = tilt = 0, Ry is a rotation by pan angle ¢,
Rp is a rotation by tilt angle 0, and R, specifies the orien-
tation of the camera as physically mounted on the pan-tilt
head.
Intrinsic Parameters:

The intrinsic camera equations relate point (X,Y.,Z.)
with its projected pixel location (X, Y7) in the image frame.

dx/sx _ X

M(Z) [Xf_CX(Z)] (1 +Kr2) - Z_c (2)
dy c

o W-G@I+) = f2 @)

with

#= [ -] + [ 60|

M@ T T M T
In these equations f is the focal length at zoom setting
0 (widest-angle), M(z) is image magnification indexed by
zoom setting, Cx(z) and C,(z) are the pixel coordinates of
the image center (see discussion below) indexed by zoom,
Sx is a scale factor that compensates for non-square aspect
ratio, and X is the first-order coefficient of radial lens distor-
tion (refer to [12] for details). Two predetermined constants
in the Tsai model, d; and dy, specify the dimensions of a
pixel in millimeters on the focal plane. We are content to
measure camera parameters in pixel units rather than mil-
limeters, and set d; = dy=1.

Discussion

Some of the issues involved in designing the above cam-
era model are discussed here. In many cases, a tradeoff
has been made for simplicity over strict geometric accuracy.
Some known factors have been intentionally left out of the
model, since they have only second-order affects on image
appearance. The overriding goal has been to devise a set
of parameters that can be measured stably from image data
without requiring precisely measured calibration targets.

1. Representing pan, tilt and the physical camera mount
as rotation matrices assumes a pure rotation model where all
rotation axes pass precisely through the camera focal point.

Unless the pan-tilt mechanism is specially manufactured,
this abstraction is unlikely to hold in practice. However,
the amount of induced parallax is negligable for an outdoor
camera viewing distant scene structure. This is one case
where in-situ outdoor calibration has a benefit over calibra-
tion in the confines of an indoor laboratory.

2. Adding a magnification term M(z) to represent lens
zoom is non-standard. Typically both focal length f and ra-
dial distortion coefficient x are written as functions of the
zoom setting [13]. Writing f(z) alone would not suffice be-
cause the effects of radial distortion decrease as the field of
view narrows. In our formulation, the image pixel radius
r? is implicitly a function of zoom (it has an M(z) term in
it), and therefore even when x is constant the pixel displace-
ments due to distortion will decrease as the zoom increases.
In this respect, our model correctly reflects the qualitative
behavior of radial distortion with respect to zoom, while us-
ing fewer parameters. To precisely capture the quantitative
relationship would require computing values for x at several
different zoom settings, as in [13). This is time consuming
and hard to perform accurately outside of a calibration lab.
A trade-off has been made here for simplicity (fewer param-
eters) over strict geometric accuracy.

3. Image center also varies with zoom [13], and thus
pixel coordinates C;(z) and Cy(z) are written as functions
of the zoom setting. For our cameras, the image center can
vary by as much as 40 pixels from low-zoom to high-zoom.
It is also known that the location of the focal point T, an
extrinsic parameter, is displaced minutely along the optic
axis with changing zoom [8, 13]. For the distances between
camera and scene structure that we are interested in, this
tiny displacement of the focal point can be ignored.

4. There are many potential definitions of image cen-
ter [14]. At least three different definitions potentially de-
scribe the meaning of C; and C, in Equations (2) and (3):
principal point, center of zoom expansion, and center of
radial distortion. It will be clear from the calibration pro-
cedure outlined in Section 3.2 that we compute C; and C,
as the center of zoom expansion (as does [8]). The prin-
cipal point is notoriously hard to compute accurately, par-
ticularly when the objects viewed are distant [7]. In con-
trast, the zoom center is easy to calculate correctly from
image data. Alternatively, two different image centers, one
for zoom and one for principal point, could be incorporated
into the model, but at the cost of introducing two more pa-
rameters and the risk of overfitting. A similar argument ap-
plies to the center of radial distortion for narrow to moderate
field-of-view lenses.

5. The equations include only one coefficient of radial
distortion, and no tangential distortion terms. For narrow to
moderate field-of-view lenses, the first coefficient of radial
distortion dominates the effects of the other distortion terms
on image appearance.




3. Intrinsic Calibration

Zooming and pure rotation of a camera induce image
pixel displacements that do not depend on 3D scene struc-
ture. We use this fact to develop calibration methods that do
not require knowledge of the scene geometry.

Previous calibration methods using active camera zoom
and rotation have been reported. For zoom calibration, Will-
son [13] is the most comprehensive work to date. He me-
thodically steps through the zoom and focus settings of the
camera, performing a full camera calibration at each step.
Li and Lavest [8] studied different feature configurations for
zoom calibration, and reinforced the notion that a good set
of features covers as much of the image as possible while
being as densely spaced as possible.

It is well-known that intrinsic parameters can be cali-
brated using a set of images related by pure rotation. The
process is known as self-calibration in the projective ge-
ometry literature [4]. Stein [10] provides an accessible de-
scription, and shows how to explicitly calibrate for intrinsic
parameters including lens distortion. Basu and Ravi [1] de-
velop simple methods for determining focal length, aspect
ratio and image center using camera pan, tilt and roll.

Stevensen and Fleck [11] present an interesting active
calibration approach using rotation and translation of a cam-
eramounted on a robot arm. Feature extraction is simplified
by using a single point light source in a dark room. The au-
thors do not use a standard parameteric camera model, but
instead directly tabulate a lookup table relating radial angle
from the principal point to distance in the image.

All of these existing active camera calibration ap-
proaches use a sparse set of simple scene features such as
corners or lines. The assumption is that a good distribu-
tion of such features across the entire field-of-view can be
obtained. This is possible in an indoor environment, partic-
ularly if one is willing to paste calibration grids on the walls
of the room. In an outdoor environment, a good distribution
of corner or line features is not always possible.

3.1. Calibration by Image Warping

Our basic approach to intrinsic calibration is to perform a
known camera zoom or rotation, and then compare the optic
flow predicted by the camera projection equations (Eq. 2,3)
with the actual observed pixel displacements. Relevant sub-
sets of the camera parameters are adjusted until the sum
of squared difference (SSD) between predicted and actual
pixel positions achieves a minimum. Initial outdoor experi-
ments using automatic detection and tracking of corner-like
features through an image sequence soon exhibited serious
limitations. Independently moving objects such as vehicles
gave rise to outlier displacement vectors that caused prob-
lems due to the sparseness of the entire feature set. Further-

more, the natural distribution of “interesting” features in the
scene was never as uniform across the field of view as one
would like.

These observations led us to abandon sparse feature
tracking methods in outdoor environments, and to focus in-
stead on a dense optic flow approach based on image warp-
ing. The approach is similar to the work of Bergen et.al. [2]
where a search through the space of affine or projective
parametric warps is performed to align an incoming image
with a reference frame. The major difference is that our
warping transformations are written in terms of physically
meaningful intrinsic camera parameters, and thus the pro-
cess of discovering the best image alignment yields a direct
estimate of the camera parameters.

Consider a reference image I3 [x;] indexed by pixel coor-
dinates x;. A change in the values of any of the camera pa-
rameters p will result in a new image I2[x;] being observed.
The displacement field x; — x; represents the optic flow in-
duced by the change in camera parameters. The flow for
active zoom and rotation of the camera does not depend on
3D scene structure, and we can write an invertible nonlinear
transformation G that maps each pixel x; to its new location
x2 = G(x1; p), and vice versa x; = H(xy; p), where H is the
inverse of G. We can thus predict how the new image will
appear:

Ll = hH(xp)] -

How well the predicted image I, matches the actual ob-
served image I, depends on how accurately we know the
camera parameters p. We can improve our estimates of
the parameters by adjusting them to minimize an SSD er-
ror function

E(p)= Y (LI -nHxpD?/ I 1 @

Xev Xev

where V is the set of “valid” pixels such that H(x;p) is a
proper index into image I;. Bilinear interpolation is used
to compute intensity values of noninteger pixel coordinates.
The denominator of Eq. (4) serves to compute the average
squared error over all valid pixels.

Care must be taken when computing £ with raw inten-
sity values. For a camera with 12X zoom and automatic
gain control, the view at high-zoom is likely to have a sig-
nificantly different brightness than the corresponding por-
tion of the image seen at low-zoom. Furthermore, changes
in outdoor scene illumination during a zoom or rotation se-
quence are possible. Motivated by [6], we perform a prepro-
cessing step consisting of histogram equalization followed
by reduction of the 8-bit intensity range to just 4 bits (16
distinct intensity values). This stretching and quantization
normalizes intensity gain and offset, and removes intensity
fluctuations due to noise.

Searching for parameter values that minimize the SSD
function is performed using Powell’s method [9]. This vari-




ant of coordinate descent optimization minimizes each pa-
rameter in turn using line search minimization. The method
cycles repeatedly through all parameters until the function
cannot be minimized further. Although it is slower than
gradient-descent approaches such as Levenburg-Marquardt,
it has the distinct benefit that no derivatives need to be com-
puted for the function being minimized.

3.2. Calibration via Zooming

Our first calibration step is to compute image magnifica-
tion M(z) and the center of zoom expansion (Cx(z), Cy(z))
as lookup tables where z runs from 0 to 1023 for the Sony
camera. For this step we simplify the projection equations
(Eq. 2,3) by setting the radial distortion coefficient & to 0.

The calibration procedure is as follows. An initial image
Iy is taken at the widest-angle zoom setting z = 0. Sub-
sequent images are taken at incrementally increasing zoom
values with a step size of 5, yielding 205 images total. For
each zoom level n, the best values for magnification and
zoom center are found by minimizing the SSD of the pre-
dicted transformation between Iy and the current image I,.
This transformation takes the form of an isotropic scaling:

!
Xy
!
Yy

M(n) [Xs — Ce(n)] + Cx(n) ®)
M(n)[Yr = G(n)]+ Cy(n) ()

All camera parameters are held fixed except for M(n), Cy(n)
and Cy(n), which are adjusted by Powell’s method until the
sum of squared differences between the predicted zoom im-
age and the observed zoom image is at a minimum. Initial
estimates for the zoom parameters are M(n) = M(n — 1),
Ci(n) = Cx(n—1) and Cy(n) = Cy(n — 1) with a base case
of M(0) = 1, C;(0) = 320 and C,,(0) = 240.

Each zoom image in the sequence of 205 images is pro-
cessed separately, and the resulting sets of estimates for
magnification and zoom center are linearly interpolated to
yield lookup tables indexed from 0 to 1023. Figure 2a
shows the resulting lookup tables for magnification wrt
zoom for five different Sony EVI-370 cameras, superim-
posed on the same graph. Each estimated curve is very
smooth, and all are in good agreement over the whole zoom
range. Figure 2b shows the image center lookup tables
computed for the five cameras. Each zoom center “trav-
els” nearly in a straight line, starting from upper right for
low zoom, to lower left for high zoom. For each camera,
the estimates for image center are tightly clustered along a
10 pixel long curve over most of the zoom range, as shown
in detail for one of the cameras in Figure 2c. Therefore,
a fairly accurate single estimate of zoom center for each
camera could be computed as the median of the C; and C,
components.

—— arn——
200 400 600 800 1000 1200

20 330 340 30 360 370 331 3% 333 334 335 33 337

Figure 2. Calibration by zooming. Top: mag-
nification vs. zoom for five cameras. Bottom
left: image center vs. zoom. Bottom right:
Detail of image center for one camera.

3.3. Calibration via Rotation

Calibration by zooming determines the values of param-
eters that vary with respect to zoom setting. In this section,
calibration by rotating the camera is used to determine the
values of the remaining intrinsic parameters (f, s, X) and
the camera mount orientation R,,,. The most observable ef-
fect of the camera mount matrix is to cause a slight roll
(rotation about the optic axis) in the image. To simplify
the optimization procedure, we therefore reduce the three
degrees of freedom of the camera mount orientation matrix
Ry, to asingle roll angle p represented by the rotation matrix
Rp.

Referring to the intrinsic camera equations, we define
a nonlinear transformation P that projects camera-centered
coordinates into pixel coordinates, and an inverse transfor-
mation Q that maps pixel coordinates into camera-centered
coordinates:

P(Xe,YeZ)) = (X5,Yp)
Q(Xf1 Yf) - (XC7 Ycazl,‘)

where in order for Q to be a well-defined transformation we
impose a constraint like (X2 + ¥? +Z2) = 1. Now consider
the relationship between an image I; taken at pan angle ¢,
and tilt angle 0;, and a second image I, taken after rotat-
ing the camera to pan angle ¢ and tilt angle 6;. Referring
to the extrinsic camera equation (1), we can now write the
transformation G that maps a pixel in I; into its predicted




Figure 3. Calibration by rotation. Left: Mosaic created from a pair of images using the intrinsic
parameters found from active rotation calibration. Middle: Magnified portion of the mosaic where
pixels from the two images were averaged. Right: Pixel bias vs. radial distance of active pantilt

towards a user-selected feature.

location in I, and the inverse H that maps from I, to I;:

G = P(RoRe,Ry, Ry RY, Rg 0(Xs,Ys))
H P(RyRe, Ry, Rgz R}, Rg 0(Xy,,Yp)) -

In the absence of radial distortion, transformations G and
H would be simple 2D projective transformations or homo-
graphies.

The calibration procedure consists of taking several pairs
of images related by known rotations, and performing a
nonlinear search over the space of parameters (f,sx,%,p)
in order to minimize the sum of the SSD errors from Eq. 4
over all pairs simultaneously. Figure 3 shows sample results
for one of the cameras. Nine pairs of images were used,
composed of all combinations of images with pan angles of
{—30,0,30} and tilt angles of {—24,—20,—16}, and all at
zoom setting 0. The best set of parameters found were used
to create the two-image mosaic in Figure 3a. Pixels in the
overlap between the two unwarped images were “blended”
by taking the average of their intensity values, therefore any
misalignments will show up as a blurring of structures in the
image. Figure 3b shows a magnified subimage taken from
the area of overlap. There is no apparent scene blurring —
thin image structures such as the painted parking lines and
sign post still appear sharp.

Another way to test the results of intrinsic calibration
is to measure camera pointing accuracy, using a cross-hair
drawn in the center of the image. The user selects the pixel
coordinates of distinctive image features with a mouse, and
a pan and tilt angle are computed that ideally will align
the crosshair with that image feature (this involves mapping
pixel coordinates to scene coordinates and back, using the
intrinsic projection equations). After performing that cam-
era rotation, the misalignment between the image feature
and the crosshair is measured. Figure 3¢ shows three curves
fit to data collected on pixel errors vs. distance of the target
feature from the image center. These curves also illustrate

the effects of removing various intrinsic parameters from
the model. The solid curve is based on using only f and sx
model terms — pointing errors of up to 9 pixels occur near
the edge of the image. Adding roll angle p improves the
performance, as shown by the dashed curve, to roughly 3
pixels at the image edge. Finally, correcting for radial dis-
tortion by adding parameter K results in a 2 pixel bias at the
edges of the image (dot-dash curve).

4. Active Extrinsic Calibration

Extrinsic calibration involves solving for the location T
and orientation R of the camera with respect to some Eu-
clidean scene coordinate system, a process also known as
pose determination [3, 7]. Camera pose is typically deter-
mined from a monocular view by finding an R and T that
bring a set of projected 3D scene features into the best align-
ment with extracted 2D image features. Fully automated
landmark-based pose determination is nearly impossible
unless a good initial pose estimate is already known, due
to the difficulty in determining the correspondence between
3D scene landmarks and extracted image features [7].

We sidestep such difficulties by manually determining
the correspondence between a sparse set of 3D landmark
points and viewing rays through the camera focal point.
Rather than infer viewing rays from image pixel coordi-
nates, our approach measures viewing orientations directly
by actively panning and tilting the camera towards each
landmark until its image projection precisely aligns with a
crosshair at the median image center (Cy,Cy) computed dur-
ing intrinsic calibration. The pan angle ¢; and tilt angle 6;
are noted for each visible landmark, yielding a set of view-
ing ray unit vectors u; = (sin ¢; cos 0;,sin6;,cos §;cos ;) in
the pan-tilt head coordinate system

Since viewing rays are determined by active camera rota-
tion, measurements can be recorded over an extended hemi-
spherical field of view. We develop an error metric based on




comparing the angle between pan-tilt viewing rays and di-
rection vectors from the camera to 3D landmark points, and
search for the pose that brings these two sets of unit vectors
into best alignment.

First consider the case where we already know the cam-
era location T (say by prior GPS measurement), and we
only need to estimate its orientation R. Each 3D land-
mark sighting P; yields two unit vectors, the viewing ray
u; as above, and a corresponding scene direction vector
n; = (P;—T)/||P; — T|| directed from the camera center T
to the landmark point. If there were no noise in the mea-
surements, these two vectors whould be related by camera
orientation R as n; = Ru;. In actuality, the 3D landmark
coordinates and the pan and tilt angles all contain measure-
ment errors. Following Horn [5], we solve for the rotation
R that best aligns these two sets of unit vectors (u;,n;) in a
least squares sense by maximizing

E=Y(ni-Ruj)=Y ( (; ;?I Ru;) @)

Using an intermediate unit quaternion representation, the
rotation R* that maximizes E can be computed in closed-
form [5].

Now consider solving for full pose by maximizing (7)
with respect to both T and R. As in earlier sections, we em-
ploy Powell’s method. More specifically, we embed Horn’s
closed-form solution for R inside a Powell coordinate de-
scent search on the three coordinates (T, Ty, T ;). For each
tested value of T the closed-form solution for R is com-
puted, and error function (7) is evaluated for that T and R.
Experiments show that this hybrid Powell-Horn approach is
remarkably insensitive to the initial estimate of T'.

Experiments

A GPS survey was performed on five fixed-mount cam-
eralocations and two dozen landmark points located around
the camera stations (see Figure 4). Measurements were
taken with a Novatel RT-2 GPS receiver in communication
with a similar Novatel base station located on site. These
units provide dual carrier phase differential readings with
roughly 2cm level accuracy.

For each camera, pan-tilt measurements were made of
the landmark points visible to it, and the pose was computed
using the hybrid Powell-Horn optimization procedure. Ac-
curacy of the resulting pose estimate for each camera is
summarized in the following table:

camera | # landmarks | dist err (n) | ang err (deg)
A 7 2.0 1.2
B 6 04 0.4
C 12 1.0 0.5
U 7 0.5 0.1
A" 9 14 0.3

Figure 4. Camera locations (white dots) and
landmark locations (black) surveyed by GPS
for pose estimation.

where distance error is the difference between the computed
location and the location as measured by GPS, and angular
error is the mean angle between corresponding unit vectors
n; and Ru;.

The hybrid Powell-Horn pose estimation process is very
stable when used with landmarks spanning a virtual hemi-
sphere. T does not need to be initialized near the actual
camera location, within the convex hull of the landmark
points, or even close to the site, in order to converge to an
accurate pose estimate. Figure 5 illustrates this behavior for
one of the cameras. Seven landmark points were sighted,
yielding a set of pan angles spanning a total range of 266 de-
grees, and a set of tilt angles spanning a range of 37 degrees.
Initial estimates of T were generated every 200 meters on a
60X 60 kilometer grid centered at the “ground-truth” camera
location measured by GPS. For each initial position, cam-
era pose was recovered using the Powell-Horn method, and
the location component was compared to the ground-truth
camera location. Each black grid cell represents an initial
location from which the pose algorithm converged to within
2 meters of the ground-truth camera position. The entire set
of landmark points is contained within a single grid cell in
the center of the image (i.e. within a 200 X 200 meter area).
The average radius of the convergence region is roughly 21
kilometers. Similar convergence properties were observed
for the other cameras.

5. Applications and Future Work

We have developed a parameteric model for an active
camera system with pan, tilt and zoom control. We have
also incorporated active camera control into novel calibra-
tion methods for determining the intrinsic and extrinsic pa-
rameters of the model. This work was motivated by the




g — 68 knm ————-——- >

Figure 5. Black pixels mark initial location es-
timates from which pose determination con-
verged to within 2 meters of the ground-truth
camera location measured by GPS.

need to calibrate in-situ a network of outdoor cameras for
video surveillance applications. Accurate camera calibra-
tion was crucial to performing several image understanding
tasks involved in video surveillance: actively tracking mov-
ing objects while rotating and zooming the camera, build-
ing image mosaics for operator visualization, pointing the
cameras at known scene landmarks such as doorways, and
estimating 3D object locations by intersecting viewing rays
with a terrain model.

Further experiments are needed to compare the accuracy
of flow-based intrinsic calibration methods to traditional
methods using precise calibration grids in a controlled en-
vironment. The level of accuracy achieved is clearly good
enough for performing outdoor surveillance tasks, but the
limits on accuracy need to be established. In the current
extrinsic calibration framework, each camera is calibrated
separately, even though many cameras can see overlapping
sets of scene landmarks. In future work we will perform
simultaneous calibration of all sensors using a bundle ad-
justment procedure to perform least-squares refinement of
all sensor poses and landmark locations. Derivation of un-
certainty bounds on computed pose is also future work.

Acknowledgements

We wish to thank our fellow VSAM team members:
Alan Lipton, Dave Duggins, Hironobu Fujiyoshi, David
Tolliver, Raju Patil and Yun-Ching Lee, for motivating this
work and providing a cool working environment. Addi-
tional thanks go to Dave Duggins for installing the cameras
and performing the GPS survey of landmark positions, and
to Takeo Kanade for his mentorship.

References

(11 A.Basu and K.Ravi, “Active Camera Calibration Us-
ing Pan, Tilt And Roll,” IEEE Trans SMC, Vol.B-
27(3), June 1997, pp. 559-566. '

[2] J.Bergen et.al., “Hierarchical Model-Based Motion
Estimation,” ECCV, 1992, pp. 237-252.

[3}] RM.Haralick et.al., “Pose Estimation from Corre-
sponding Point Data,” IEEE Trans SMC, Vol. 19(6),
Nov 1989, pp. 1426-1446.

[4] R.1.Hartley, “Self-Calibration from Multiple Views
with a Rotating Camera,” ECCV, 1994, pp.471-478.

[5] B.K.P.Horn, “Closed Form Solutions of Absolute Ori-
entation Using Unit Quaternions,” JOSA-A, Vol. 4(4),
April 1987, pp. 629-642.

[6] T.Kanade et.al., “A Stereo Machine for Video-Rate
Dense Depth Mapping and Its New Applications,”
CVPR, 1996, pp.196-202.

{71 R.Kumar and A.R.Hanson, “Robust Methods for Es-
timating Pose and a Sensitivity Analysis,” CVGIF,
Vol. 60(3), Nov. 1994, pp. 313-342.

[8] M.X.Liand J.M.Lavest, “Some Aspects of Zoom Lens
Camera Calibration,” IEEE Trans. PAMI, Vol.18(11),
November 1996, pp. 1110-1114

{91 W.H.Press et.al., Numerical Recipes in C, Cambridge
Univ Press, New York, 2nd edition, 1992.

[10] G.P.Stein, “Accurate Internal Camera Calibration Us-
ing Rotation, with Analysis of Sources of Error,”
ICCV, 1995, pp.230-236.

[11] D.Stevenson and M.M.Fleck, “Robot Aerobics: Four
Easy Steps to a More Flexible Calibration,” ICCV,
1995, pp.34-39.

[12] R.Y.Tsai, “A Versatile Camera Calibration Technique
for High-Accuracy 3D Machine Vision Metrology Us-
ing Off-the-Shelf TV Cameras and Lenses,” IEEE
Journal of Robotics and Automation, Vol. RA-3,
No. 4, August 1987, pp. 323-344.

[13] R.G.Willson, Modeling and Calibration of Automated
Zoom Lenses, Ph.D. Thesis, Carnegie Mellon Univer-
sity, CMU-RI-TR-94-03, 1994.

[14] R.G.Willson and S.A.Shafer, “What is the Center of
the Image?,” JOSA-A, Vol.11(11), November 1994,
Pp- 2946-2955.




Using a DEM to Determine Geospatial Object Trajectories

Robert T. Collins, Yanghai Tsin, J. Ryan Miller and Alan J. Lipton
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 15213
Email: {rcollins,ytsin,jmce,ajl}cs.cmu.edu

Abstract

This paper addresses the estimation of moving ob-
ject trajectories within a geospatial coordinate system,
using a network of video sensors. A high-resolution
(0.5m grid spacing) digital elevation map (DEM) has
been constructed using a helicopter-based laser range-
finder. Object locations are estimated by intersect-
ing viewing rays from a calibrated sensor platform
with the DEM. Continuous object trajectories can then
be assembled from sequences of single-frame location
estimates using spatio-temporal filtering and domain
knowledge.

1 Introduction

Carnegie Mellon University and the Sarnoff Corpo-
ration are developing a Video Surveillance and Mon-
itoring (VSAM) testbed that can seamlessly track
human and vehicle targets through a large, visually
complex environment. This apparent seamlessness is
achieved using a network of active sensors to coop-
eratively track targets that cannot be viewed con-
tinuously by a single sensor alone. As targets move
out of the active field-of-view of one sensor, they are
“handed-off” to another sensor in the network. Au-
tomated target hand-off requires representing the ge-
ometric relationships between: 1) multiple sensor lo-
cations and their potential fields-of-view, 2) target lo-
cations, velocities, and predicted paths, and 3) loca-
tions of scene features that may occlude sensor views
or influence target motion (roads, doorways). In the

VSAM testbed, this information is made explicit by

representing all sensor pose information, target tra-
jectories, and site models in a single geospatial coor-
dinate system.

This paper addresses the issue of estimating geospa-
tial target trajectories. In addition to their uses in
planning sensor hand-off, such trajectories can be used
to generate visual activity synopses for review by a
human observer, to perform motion-based inferences
about target behavior such as loitering, and to detect
multi-agent interactions such as rendezvous or convoy-
ing. In regions where multiple sensor viewpoints over-
lap, object trajectories can be determined very accu-
rately by wide-baseline stereo triangulation. However,
regions of the scene that can be simultaneously viewed
by multiple sensors are likely to be a small percentage
of the total area of regard in real outdoor surveillance
applications, where it is desirable to maximize cover-
age of a large area given finite sensor resources.

Determining target trajectories from a single sensor
requires domain constraints, in this case the assump-

tion that the object is in contact with the terrain. This
contact location is estimated by passing a viewing ray
through the bottom of the object in the image and in-
tersecting it with the a digital elevation map (DEM)
representing the terrain. Sequences of location esti-
mates over time are then assembled into consistent ob-
ject trajectories. Previous uses of the ray intersection
technique for object localization have been restricted
to small areas of planar terrain, where the relation be-
tween image pixels and terrain locations is a simple
2D homography [3, 4, 6]. This has the benefit that no
camera calibration is required to determine the back-
projection of an image point onto the scene plane, pro-
vided the mappings of at least 4 coplanar scene points
are known beforehand. However, the VSAM testbed is
designed for much larger scene areas that may contain
significantly varied terrain.

The remainder of this paper discusses site modeling
issues, emphasizing construction of a high-resolution
DEM using a laser range-finder, the basic ray inter-
section technique for producing an estimate of object
location from a single frame, and finally, techniques
for producing consistent object trajectories from se-
quences of location estimates. Everything is illus-
trated using results from a VSAM testbed demonstra-
tion held in November 1997 at CMU’s Bushy Run re-
search facility.

2 Site Modeling

The term “geo”spatial refers to coordinate systems
that represent locations on the surface of the Earth
geoid — the ultimate absolute frame of reference for
planetary activities. This does not necessarily im-
ply a spherical coordinate system — local coordinate
systems such as map projections can be geospatial if
the transformation from local to geodetic coordinates
is well documented. The primary benefit gained by
firmly anchoring the VSAM testbed in geospatial co-
ordinates is the ability to index into off-the-shelf car-
tographic modeling products. It is envisioned that fu-
ture VSAM systems could be rapidly deployed to mon-
itor trouble spots anywhere on the globe, with an ini-
tial site model being quickly generated from archived
cartographic products or via aerial photogrammetry.

2.1 Coordinate Systems

Two geospatial site coordinate systems are used in-
terchangeably within the VSAM testbed. The WGS84
geodetic coordinate system (“GPS” coordinates) pro-
vides a reference frame that is standard, unambiguous
and global (in the true sense of the word). Unfor-




tunately, even simple computations such as the dis-
tance between two points become complicated as a
function of latitude, longitude and elevation. For this
reason, geometric processing is performed within a
site-specific Local Vertical Coordinate System (LVCS)
[1]. An LVCS is a Cartesian system oriented so that
the positive X axis points east, positive Y points true
north, and positive Z points up (anti-parallel to grav-
ity). All that is needed to completely specify an
LVCS is the 3D geodetic coordinate of its origin point.
Conversion between geodetic and LVCS coordinates is
straightforward, so that each can be used as appropri-
ate to a task.

For purposes of calibration and ground truth sur-
veying, a GPS base station and rover configuration
was established at the Bushy Run site using a pair of
Ashtech Z-surveyer receivers. Using dual-frequency,
carrier phase differential correction techniques, this
system can measure locations with a horizontal accu-
racy of 1 cm (rms) when stationary and to within 3 cm
(rms) when on the move. Vertical position estimates
are roughly 1.7 times less accurate (1.7 cm static, 5
cm on the move).

2.2 Site Maps

To provide a human observer with a comprehen-
sive site overview, a graphical user interface was built
based on a digital orthophoto acquired as a commer-
cial product from the United States Geological Survey
(USGS). A small piece of this orthophoto, encompass-
ing the central Bushy Run site, is shown in Figure 1.
An orthophoto is a nadir (down-looking) image of the
site as it would appear under orthographic projection,
leading to an image in which scene features appear in
their correct horizontal positions.

Figure 1: One-meter resolution USGS orthophoto
showing the Bushy Run test site.

The third dimension of the scene is represented by a
digital elevation map (DEM), coregistered with the or-
thophoto, that indicates scene elevation at each pixel.

This essentially 2.5D representation has some limita-
tions; for example, it cannot explicitly represent verti-
cal wall surfaces or multiple elevation structures such
as road overpasses, however it is a simple, popular
representation that can easily handle the overwhelm-
ing majority of terrain surfaces at a site. In the case
of Bushy Run, the commercially available USGS DEM
was not suitable to our purposes. The 30-meter square
pixel sampling of the USGS DEM was much too coarse
~ individual trees, for example, which have a great
impact on occlusion analysis, are completely indistin-
guishable at this resolution. In addition, USGS DEMs
have been edited to explicitly remove building struc-
tures, which are useful for high-level reasoning about
human activities. For these reasons, a custom DEM
with half-meter pixel spacing was constructed using
a laser range-finder mounted on a robotic helicopter.
Since this high-resolution DEM is crucial to the tar-
get geolocation algorithm, the construction process is
described in detail below.

2.3 High-Resolution DEM

The CMU autonomous helicopter project is devel-
oping an aerial laser mapping system [2, 9]. The CMU
helicopter is a mid-sized, unmanned helicopter that is
capable of fully autonomous takeoff, flight path track-
ing, accurate (< 20 cm) stationary hover, and landing.
The laser scanning system is one of the sensor pack-
ages that can be flown aboard the helicopter. Ulti-
mately, this scanner will automatically develop highly
accurate (10 cm) 3D models of large environments, in
a more efficient manner than is provided by existing
techniques.

2.3.1 Laser Mapping System

Mounted beneath the helicopter is a simple laser scan-
ner that scans the terrain in a plane perpendicular to
the helicopter’s direction of forward flight (Figure 2).
This scanning motion, combined with the forward mo-
tion of the helicopter, allows patches of terrain up to
200m wide to be measured in a single pass. Larger ar-
eas are scanned by systematically flying patterns that
completely cover the area.

The scanner uses a Riegl LD-90 time-of-flight laser
range-finder to measure the straight line distance from
the scanner to a target point on the terrain. A sin-
gle motor/encoder combination positions a mirror to
scan the laser’s beam through the scanning plane. The
scanning system requires that the position and atti-
tude of the helicopter be known at all times to cor-
rectly determine the real coordinates of the sampled
points. The test system uses a Novatel RT-20 GPS
receiver to measure position, a pair of Gyration gyro-
scopes to measure pitch and roll, and a KVH flux-gate
compass to measure yaw.




Figure 2: Aerial mapping with a single planar scanner.

2.3.2 Bushy Run Mapping Procedure

The Bushy Run site was scanned to provide a high
resolution DEM for object geolocation. The proce-
dure for generating the DEM was as follows: 1) A
GPS differential correction base station was setup at
the Bushy Run site. 2) The helicopter mapping sys-
tem was prepared for flight, and a local navigation
frame was selected. 3) The helicopter mapping system
was flown to scan the entire Bushy Run site. During
the scan, the helicopter’s position and attitude were
collected and sent to ground computers for storage.
Similarly, the laser scanner’s measurements were also
stored on the ground computers. 4) After the flights,
the stored helicopter position and attitude were com-
bined with the laser scanner’s data to compute 3D
coordinates of each point sampled by the laser range-
finder. 5) The 3D data points were transformed from
the helicopter’s local navigation frame to the VSAM
LVCS frame. 6) A DEM grid with cell size 0.5 m x 0.5
m was initialized. Each 3D point was assigned to one
of the cells of the DEM by simply ignoring its Z com-
ponent and allowing it to fall into one of the cells. For
each cell of the DEM, three statistics were computed:
the mean elevation of all points landing in that cell,
the variance in the elevation of these points, and the
total number of points. These three matrices comprise
the resulting DEM.

2.3.3 Bushy Run Results

The Bushy Run site is approximately 300m x 300m,
and has an asphalt road surrounding an open field
with two large buildings and trees surrounding the
area. A test pilot manually flew the helicopter about
10 meters above the road as the system scanned the
surrounding environment. The flight was approxi-
mately 5 minutes in duration, and collected over 2.5
million 3D data points. Figure 3 shows a point cloud
visualization of the data. For display purposes, each

point is shaded based on a combination of elevation,
and on return intensity of the laser. As such, the road
is readily visible. It should also be noted that since
the helicopter was flown above the road, the low den-
sity of measurements from the center of the field is
expected.

Figure 3: Perspective view of 3D point cloud from test
scan. ’

Figure 4 shows a digital elevation map with 0.5m
square grid spacing, generated from the scan data.
The intensity of each pixel indicates the average el-
evation measured for that location. A side-by-side
comparison of this image with the orthophoto in Fig-
ure 1 indicates that the mapping system is producing
reasonable results. For purposes of geolocation esti-
mation, holes in the DEM (black areas in Figure 4)
were filled be inserting bilinearly interpolated values
from the USGS 30-meter DEM. This fusion of infor-
mation was possible since both DEMS are precisely
geolocated.

Figure 4: Half-meter resolution DEM showing same
area as orthophoto in Figure 1. Intensity has been
enhanced to emphasize terrain variation.




3 Estimating Target Location

The VSAM testbed contains highly effective algo-
rithms for detecting, classifying and tracking moving
targets through a 2D video sequence [7]. Target loca-
tions in the scene are estimated from the bounding box
of stable motion regions in each frame of the sequence.
Each location estimate is obtained by shooting a 3D
viewing ray through the center of the bottom edge
of the target image bounding box out into the scene,
and determining where it intersects the terrain. This
procedure is illustrated in Figure 5.

User view

Figure 5: Estimating object locations by intersecting
view rays with a terrain model.

3.1 Camera Calibration

Calibration of the internal (lens) and external
(pose) sensor parameters is necessary in order to de-
termine how each pixel in the image relates to a view-
ing ray in the scene. The internal parameters of the
sensor are determined manually, off-line. The external
parameters consist of sensor location and orientation,
measured with respect to the site LVCS. These are de-
termined as part of the sensor setup procedure. Each
sensor is mounted rigidly to a pan-tilt head, which in
turn is mounted on a leveled tripod, thus fixing the
roll and tilt angles of the pan-tilt-sensor assembly to
be zero. The location (zg,yo,20) of the sensor is de-
termined by GPS survey.

The only other degree of pose freedom is the yaw
angle (horizontal orientation) of the sensor assembly.
This angle is estimated using a set of vertical land-
marks distributed around the site, whose horizontal
locations (z;,y;) are known (surveyed by GPS). For
each visible landmark the pan-tilt assembly is guided
(by hand) to pan until the landmark is centered in the
camera image, thereby measuring a set of pan angles
{pan;li = 1,...,n}. Each measured pan angle yields

an independent estimate 6; of camera yaw as
8; = atan2(y; — yo,T; — o) — pan; .

A final yaw estimate 6 is computed as the average of
these angles, taking care to use the appropriate for-
mula for averaging angular data [8], namely

n n
6= atan2(z sin 6;, Zcos 6;) .
1 1

3.2 Ray Intersection with the DEM

Given a calibrated sensor, and an image pixel corre-
sponding to the assumed contact point between an ob-
ject and the terrain, a viewing ray (zo+ku, yo+kv, 2o+
kw) is constructed, where (xo, 3o, z0) is the 3D sensor
location, (u,v,w) is a unit vector designating the di-
rection of the viewing ray emanating from the sensor,
and k > 0 is an arbitrary distance. General methods
for determining where a viewing ray first intersects a
3D scene (for example, ray tracing) can be quite in-
volved. However, when scene structure is stored as a
DEM, a simple geometric traversal algorithm suggests
itself, based on the well-known Bresenham algorithm
for drawing digital line segments. Consider the verti-
cal projection of the viewing ray onto the DEM grid
(see Figure 6). Starting at the grid cell (zo, o) con-
taining the sensor, each cell (z,y) that the ray passes
through is examined in turn, progressing outward, un-
til the elevation stored in that DEM cell exceeds the
z-component of the 3D viewing ray at that location.
The z-component of the view ray at location (z,y) is
computed as either

__(z —u-To)w or zp+ ____(y _vyo)w (1)

2o +

depending on which direction cosine, u or v, is larger.
This approach to viewing ray intersection localizes ob-
jects to lie within the boundaries of a single DEM
grid cell. A more precise sub-cell location estimate
can then be obtained by interpolation. If multiple in-
tersections with the terrain beyond the first first are
required, this algorithm can be used to generate them
in order of increasing distance from the sensor, out to
some cut-off distance.

4 Assembling Target Trajectories

Computation of dynamic object trajectories in the
scene is useful for planning sensor hand-off, generating
visual activity summaries, and for performing qualita-
tive behavior analysis. The previous section described
how target locations can be estimated from each frame
by intersecting viewing rays with a DEM. This section
discusses the assembly of single-frame location esti-
mates into continuous scene trajectories using spatio-
temporal filtering and domain knowledge.




[ Ray: (x0,Y0,0) + K(UV.W) |

Vertical

Projection
I O A
._—| Ray: (X0,Y0) + k(U,V) I = ’.
A\ L1 xo,Yo||
\.y
X
$
_ | Erev(x0sku, Yorkv) > 20+ kW |
T T T T T T 1

Figure 6: A Bresenham-like traversal algorithm deter-
mines which DEM cell contains the first intersection
of a viewing ray and the terrain.

4.1 Spatio-Temporal Filtering

Target trajectories can be created by simply con-
catenating a sequence of static object geolocations.
However, some of these single-frame location estimates
may be in error, due to imprecision in the motion re-
gion bounding box. Furthermore, a single viewing ray
may intersect the terrain multiple times, and the first
intersection is not always the correct one, since our
“terrain” representation also contains trees and build-
ings that may occlude parts of the object. An ex-
ample of this is shown in Figure 7a, corresponding to

“a video sequence in which a tracked vehicle became
partially occluded by a tree. Composing single-frame
estimates of the first intersection of the target view-
ing ray with the terrain generates a scene trajectory
that incorrectly appears to swerve into the tree. Fig-
ure 7b shows a better trajectory, generated by taking
the last intersection between the viewing ray and the
terrain. Although this simple heuristic is effective in
removing errors caused by occluding foliage, it may
yield incorrect results in rugged or hilly terrain, when
multiple elevation structures such as bridges exist, or
in the case of a person walking on a building roof.

A more general mechanism for assembling location
estimates into smooth, continuous object trajectories
is spatio-temporal filtering. For example, Kalman fil-
tering could be used to build a dynamic model of the
target, based on the assumption that the target will
not make sharp turns and abrupt accelerations 3, 6].
However, as mentioned above, a viewing ray may in-
tersect the terrain multiple times, resulting in sev-
eral alternative hypotheses for target location. The

Figure 7: Left: Unfiltered ray intersection trajectory
shows a car “jumping” into a tree. Right: Filtered
trajectory removes the treetop detour. Note that sen-
sor locations and fields of view are also depicted on the
user interface.

Kalman filter, based on unimodal Gaussian densities,
cannot simultaneously represent these multiple pos-
sible paths, and an incorrect choice of initial value
will doom the entire trajectory. What is required is a
more advanced filtering method that can handle mul-
tiple data associations, such as the CONDENSATION
algorithm [5]. This is a topic of current work.

4.2 Domain Knowledge

Notwithstanding the need for a powerful, general
mechanism to generate smooth target trajectories, in
certain cases domain knowledge can be used to gen-
erate simpler, approximate solutions. In particular,
the VSAM testbed classifies moving objects as being
either human or vehicle [7]. Vehicular target motion
is typically constrained to lie along roadways in the
scene, and this heuristic suggests the use of a road
network graph together with the viewing ray DEM
intersection algorithm to produce unambiguous, accu-
rate target trajectories.

For public roadways, the USGS digital line graph
(DLG) product contains geolocated road networks as a
connected graph of line segments. In the case of Bushy
Run (private property), a road map was outlined by
hand, using the digital orthophoto. Each vehicle loca-
tion estimate was computed as a function of the target
viewing ray, road network and DEM, as follows. As
in Section 3.2, let the target viewing ray be written as
(zo + ku,yo + kv, zo + kw). Both the viewing ray and
road network curves are converted into 2D by vertical
projection (ignoring their z-components), and a set
of intersection points (z;,y;) between the viewing ray
and road curves are computed, out to a cutoff distance.
In general, the viewing ray will intersect the road map
several times. Elevation information from the DEM is
used to disambiguate between the multiple road lo-
cation candidates, by choosing the the location (&, §)
where the difference between DEM elevation and the




viewing ray z-component is smallest, that is
(§:7 g) = arg;nl;l |elev(a:,-, yz) —Tray; (xia yz)' )

where the viewing ray z-component is computed as in
Equation 1. This approach essentially finds the point
with the minimum distance (measured vertically) be-
tween a 3D viewing ray and a set of space curves rep-
resenting roads, but with low computational cost.

Figure 8 shows an activity synopsis generated us-
ing this approach, in the form of a long-term vehicle
trajectory around the Bushy Run site. Two sensors
cooperatively track a vehicle that drives into the site
from the left, descends a hill into a parking lot, stops
and turns around, then proceeds out of the parking lot
and continues in its counterclockwise journey around
the site. Gaps in the trajectory correspond to hand-off
regions and occlusion areas where neither sensor was
reliably tracking the object.

Figure 8: Activity synopsis of a vehicle driving through
Bushy Run.

5 Current Work

This year the VSAM IFD demo will be held in and
around the CMU campus, and feature nearly a dozen
sensors tracking objects throughout a cluttered, ur-
ban environment. A full geospatial site model of the
area is currently being constructed, including terrain,
road networks, sidewalks, bridges, building volumes,
and specific trees. The VSAM testbed will be able to
manipulate these site model elements using ibCTDB,
a library of geometric utilities for interacting with a
geospatial database, developed within the military’s
synthetic environments program. LibCTDB will sup-
port the VSAM testbed’s need for occlusion analysis
and ray intersection to support multi-sensor hand-off,
as well as offer an interface to fully interactive, 3D
dynamic visualization packages. Furthermore, more
general methods of performing spatio-temporal filter-
ing given multiple competing location hypotheses are
being pursued.

Acknowledgements

We wish to thank Omead Amidi and Marc De-
Louis for designing, building and operating the CMU
Robot Helicopter, Daniel Morris for implementing the
Bresenham-like ray intersection algorithm, and the
cast and crew of the 1997 VSAM demo.

References
[1] American Society of Photogrammetry, Manual of

Photogrammetry, Fourth Edition, American Soci-
ety of Photogrammetry, Falls Church, VA, 1980.

[2] O.Amidi, T.Kanade and R.Miller, “Vision-based
Autonomous Helicopter Research at Carnegie
Mellon Robotics Institute,” Proceedings of Heli
Japan 98, Gifu, Japan, April 1998.

[3] K.Bradshaw, L.Reid and D.Murray, “The Ac-
tive Recovery of 3D Motion Trajectories and
Their Use in Prediction,” IEEE PAMI, Vol.19(3),
March 1997, pp. 219-234.

[4] B.Flinchbaugh and T.Bannon, “Autonomous
Scene Monitoring System”, Proc. 10th Annual
Joint Government-Industry Security Technology
Symposium, American Defense Preparedness As-
sociation, June 1994.

[5] M.Isard and A.Blake, “Contour Tracking by
Stochastic Propagation of Conditional Density,”
Proc. ECCV, 1996, pp. 343-356.

[6] D.Koller, K.Daniilidis, and H.Nagel, “Model-
Based Object Tracking in Monocular Image Se-
quences of Road Traffic Scenes, IJCV, Vol.10(3),
June 1993, pp. 257-281.

[7] A.Lipton, H.Fujiyoshi, and R.Patil, “Moving Tar-
get Identification and Tracking from Real-time
Video,” submitted to WACV 1998.

[8] K.V.Mardia, Statistics of Directional Data, Aca-
demic Press, New York, 1972.

[9] R.Miller and O.Amidi, “3-D Site Mapping with
the CMU Autonomous Helicopter,” To appear in
Proc. 5th Intl. Conf. on Intelligent Autonomous
Systems, Sapporo, Japan, June 1998.




Fast Image-Based Tracking
by Selective Pixel Integration

Frank Dellaert and Robert Collins
Computer Science Department and Robotics Institute

Carnegie Mellon University
Pittsburgh PA 15213

Abstract

We provide a fast algorithm to perform image-based tracking, which relies on the selective integration
of a small subset of pixels that contain a lot of information about the state variables to be estimated. The
resulting dramatic decrease in the number of pixels to process results in a substantial speedup of the
basic tracking algorithm. We have used this new method within a surveillance application, where it will
enable new capabilities of the system, i.e. real-time, dynamic background subtraction from a panning
and tilting camera.

1. Introduction/Philosophical Approach

One of the fundamental tasks of real-time processing has been image-based tracking through a video
sequence using a parametric motion model. This includes both tracking of a moving object through an
image sequence [5] as well as registering of whole images to a reference view to provide software video
stabilization [2,8].

Figure 1. Selective pixel integration selects pixels with a high information content with
respect to the variables to be estimated. In this image, the pixels marked in white are
informative with respect to pan, tilt and roll of the camera (click on the image to enlarge).

In this paper we will provide a fast algorithm to perform image-based tracking, based upon the
following observation:




Using only a small percentage of the available pixels, selected on their information content
with respect to the state variables, yields a tracking algorithm that is as accurate as
conventional tracking algorithms that use entire images or image pyramids, yet orders of
magnitude faster.

This observation relies on the fact that only very few pixels actually contribute towards the shaping of
the error function that is minimized (see Figure 1). In the case of tracking, this is typically a weighted
sum of square errors dependent on the parameters to be estimated. In the neighborhood of the minimum,
the shape of the error function is governed by its Hessian. When inspected, the vast majority of pixels
are seen to contribute little or nothing to the value of the Hessian, suggesting that these pixels can be
safely ignored for the purpose of tracking.

Selective pixel integration is not yet another feature selection algorithm: we are truly selecting pixels,
not small feature windows. Feature-based methods track the location of a small feature window, and the
x-y coordinate of the feature is provided as input to the estimation method. In our case, we look directly
at the value of a particular pixel. Each pixel will change in a predictable way as a function of the
parameters, and thus each pixel in isolation provides some information on each of the parameters that
cause it to change its value. The amount of information provided can be rigorously computed, as will be
shown below. Based on this computed information content, we can designate some pixels as being better
than others for estimating state variable updates.

2. Selective Pixel Integration

2.1 Definition and Example of Tracking

|

warped T = h(X.T
X=[abcdefgh]

Figure 2. An example of a tracking problem is to estimate, over time, the parameters X=[a b
cdefg h]’ that warp the template T to the changing input image I, according to a 2D




projective transformation (a 2D homography).

We will define tracking as estimating the transformation between a reference image or template T and
the current input image I over time. Let’s define the state X and the measurement function h(X,T) that
together specify this transformation. An example we will use throughout is the case where his a
projective warp of the template T, and X contains as components the eight independent parameters that
are needed to specify the projective warp. The situation is illustrated in Figure 2.

The application we discuss below (as well as the example in Figure 2) involves whole images and is
therefore more often referred to as image registration, but the algorithm we discuss is in no way limited
to this type of application. Please refer to [6,5,4,3] for other examples of image based tracking, in
particular face tracking, tracking of planar objects in 3D, and estimating lighting changes as well as
deformations of shape. [5] also talks about how one can deal with outliers and occlusion, which we will
not discuss in detail here.

2.2 A General Tracking Algorithm

The most often used method to find an estimate for X at each time step is minimizing the sum of square
eITors:

X* = argmin (7 — h(X,T))? (1)
X .

where we have used e? as shorthand for e’e, and where e¢’denotes the transpose of a matrix or vector e.
This can be solved using the pseudo-inverse:

X" - X, = HY'H’ (I-h(X,1)) (2)

where X, is a prediction based on the previous tracking history, and H is the measurement Jacobian. It
is defined as the Jacobian matrix of h(.,.) with respect to X, and evaluated at X, o If h is non-linear, more
than one iteration might be required to converge to the minimum. ‘

2.2.1 The interpretation of the Measurement Jacobian




Figure 3. Jacobian images show how pixel values will change with respect to a change in
state variables. An example image and its Jacobian images with respect to (in reading
order) incremental camera roll, pan and tilt. Red and green are decrease and increase in
pixel value, respectively. Intuitively, a change and pan and tilt will cause most change at
vertical and horizontal edges, respectively. An equal amount of roll causes much less change
in the image, with most change occurring at the edges and none in the middle of the image.

The measurement Jacobian has an intuitive explanation in terms of Jacobian images [4,3], which are a
pictorial representation of how a pixel’s value will change with respect to a change in state variables.
They are simply the columns H f of the measurement Jacobian H, reordered as images. Hager [6,5] calls

these images *motion templates’. An example is shown in Figure 3.

It is clear that these Jacobian images, and thus H, are in general a function of the state X. Furthermore,
they are expensive to compute, as each one of them is an image of the same size as the original template
image. However, now there are n of them, where n is the dimension of X. Furthermore, they are in
general non-linear and complex functions of the state and the template, as they are computed as the
point-wise multiplication of induced flow fields and the template gradient images [3,5]. More about the
computation of Jacobian images appears in the Appendix.

2.2.2 Computational Demands




The solution outlined above works, but is expensive, as hinted at in the previous paragraph. At each time
step, and this possibly for multiple iterations, we need to compute (a) the Jacobian images H 7 (b) the

pseudo-inverse (H’ H)! B, and (c) we need to warp the template T according to the changing estimate
of X.

One trick to reduce the computation is to warp the image I towards the template T instead, and minimize
an approximate criterion:

dX* = ar%r{lin(h(xﬂ'l;f ) — h(dX, T)) 3)

where h(X,,"},I) informally denotes the inverse warp corresponding to h(X, o-T)- We now look for the best
residual warp h(dX,T) that accounts for the difference between the warped image h(X 0‘1,1 ) and the

template T. We then update the state estimate X, using this incremental state update dx™:

X' =X, ®dX* “

with @ denoting the update operation. The update might be a simple addition, as in the case of pure

translation, or matrix multiplication, when composing general projective transformations.

Again, using the pseudo-inverse, we get an expression for dX *
dxX* = (H’ Hy'' H’ (W(Xy1.D-T) )

where our initial guess for dX is 0, i.e. we assume X, is correct, and h(0,T)=T. This trick makes it

possible to pre-compute the Jacobian H, as we will always take O as the initial guess for dX, and so the
Jacobian is evaluated only at 0. Thus, the pseudo-inverse of H can also be pre-computed [5].

2.2.3 Gaussian Pyramids

Although precomputing H saves a lot of computation, we still need to warp the image I at each time
step, possibly multiple times if we need to iterate due to a non-linear h. Especially if L is large, e.g.
complete images, this can be prohibitively expensive. One way to deal with this is to down-sample the
images into a Gaussian pyramid. In many image registration applications enough accuracy can be
obtained by only registering the low-resolution versions of I and T, and the cost of warping is not that
high, as there are less pixels in the downsampled images. However, we still need to do the work of
filtering and down-sampling to obtain the pyramid.

2.3 Selective Pixel Integration

A completely different approach is selective pixel integration, i.e. looking at the pixels in the original




images that yields the most information about dX. Intuitively, a pixel in a non-textured, flat area does
not contribute much, if anything. Also, pixels that suffer from the aperture problem only contribute
knowledge about part of the state. If we could find a small subset of the pixels that yield enough
information about the state to satisfy our demands on accuracy, we could dramatically reduce the cost of
warping, and thereby the overall cost of tracking, without downsampling.

It turns out that a similar question has been asked before in the MRI community [10]: suppose we can
shoot any of thousands of rays at a person to get an MRI image reconstruction, but we want to use as
few rays as possible, which ones should we choose ? In both cases, the underlying question is the
same:Which measurements yield the most information about the quantity to be estimated ?

2.3.1 The ’Best Pixel’

Suppose we could only look at one pixel, which pixel should we pick ? First, one pixel might yield only
partial information about the state X. The answer will thus depend on what we already know. In
addition, the matrix H’H in the pseudo-inverse will become singular in this case, as the measurement
Jacobian H will be rank deficient. Both reasons prompt us to introduce prior knowledge.

Figure 4. The images above show the decrease in uncertainty resulting from looking at one
pixel only. The actual quantity shown is the decrease in the trace of the state covariance
matrix, relative to the prior information P. The brighter a pixel, the more information it
provides. This heavily depends on our prior knowledge: at the left, the only uncertain state
variable is the roll of the camera with respect to the template. In the image at the right, roll
is known, but pan and tilt are not known precisely (up to one degree).

Let us assume that we can characterize our prior knowledge about dXby a Gaussian, centered around 0
and with covariance matrix P. We also need to know something about the measurement itself: how
trustworthy is it? If we assume that the pixels are contaminated by i.i.d. zero-mean Gaussian noise, this

information is specified by the variance & % The maximum a posteriori or MAP estimate for dX, given

one pixel j, is then found by minimizing a criterion which now takes into account the deviation of dX
from O:




dX* = argmin o~ 2(h(X ", I) — hi(dX, T))* + dX'P~1dX 6)
ax

where h; is the ith component of h, i.e. the recipe to warp one pixel according to X. This is done by
(repeatedly, if needed) solving the linear system of normal equations, with H; the ith row of the Jacobian
H:

(o H{H; + P™)dX* = o H}(h(X;",1) = T) g

It is known from estimation theory that after convergence, the posterior distribution P(dX|I) (our full
knowledge about dX) can be locally approximated as a Gaussian with covariance equal to the inverse of
the Hessian Q:

Pt=(0"?HIH; +P") 1 =Q! ®)

To find the best pixel, we would like to minimize this uncertainty. Although P* is an 12 X % matrix .

(where n is the dimension of the state X), the trace of P* is also a meaningful quantity: it is equal to the
expected variance of the error function after we obtained dX *. Thus, one way to find the best pixel i is to
minimize the trace of P* [10}:

i = argmin Tr (0 H;H; + P7')™" ©
i

Note that the identity of the best pixel is highly dependent on the prior knowledge P and on the form of
h. In Figure 4, this is illustrated graphically for varying prior knowledge P. More examples of this
dependence on P can be found here. Note also that all this can be generalized to arbitrary noise
covariance matrices R, so that correlated noise can be modeled equally well.

2.3.2 The Best Subset of Pixels

Finding the best pixel is easy, but what about the best subset of pixels? It turns out this question is hard.
Intuitively, the best pixel and the second best pixel do not necessarily constitute the best set of two
pixels, as they might provide redundant information. In fact, the *best pixel’ might not even be a
member of the best 2-set at all. in general, the only way the find the optimal set of M pixels, is to look at
all possible subsets of size M within the m pixels. But this is a combinatorial search problem of

immense proportions, as there are binomial(M m) such sets. With m on the order of 10% and M on the
order 102, this is infeasible.




Figure 5. An example of selecting the subset of the best 1000 pixels in an image using the
greedy SFS algorithm as described in \cite{Reeves95). At the left, the set of 1000 pixels for
known roll but unknown (incremental) pan and tilt. The color indicates the order in which
pixels were selected by SFS, brighter meaning earlier in the sequence. As can be seen,
mostly pixels on diagonal edges are picked out, as these provide information both on pan
and on tilt. At the right, a set of 1000 pixels when pre-whitening is applied to remove spatial
correlation.

A greedy algorithm was given in [10], based on a feature selection algorithm from machine learning,
sequential forward search (SFS). In this algorithm, a list of pixels is created greedily. The procedure
starts with a list containing only the best pixel, optimal in conjunction with the prior information P. The
integration of this pixel gives a new covariance matrix, B, which now combines the information in P and
the best pixel. Then, the best pixel is found that provides the most information relative to B. This
process is repeated until M pixels are found.

We have implemented Reeves’ SFS algorithm, and an example is shown in Figure 5. One problem that
tends to arise, however, is that the selected pixels tend to cluster in the image, which would lead to
non-robust tracking behavior in case of correlated noise such as occlusion, lens smudges etc... To
remedy this, we have also applied pre-whitening to the Jacobian to cope with spatially correlated noise.
The details are beyond the scope of this paper, but the effect is very noticeable. In the right panel of
Figure 5, the new set of pixels obtained after pre-whitening is much more spread out, which is what we
want.

2.3.3 Random Pixel Selection

For all the theoretical merit of Reeves’ SFS algorithm, we have found that an even simpler algorithm
provides more robustness in the case of image based tracking. Even the pre-whitened version of SFS
still clusters pixels in a few regions of the image, which leads to instabilities in the tracking process in
the case of occlusion. The answer we came up with is simple but works: we simply select M pixels
randomly from the top 20 percent of the ’best’ pixels. In other words, we compute an image like the one
in Figure 4, sort the pixels according to information content (with respect to a prior), drop the bottom 80
percent, and randomly select M pixels from the remaining set. Examples of sets of pixels thus obtained
are shown below in the application section.We have found that this simple method performs quite well
in practice, and it is also straightforward to implement.




At the time of writing, we are also experimenting with an alternative method (also used by Zhang in a
different context), that imposes an imaginary grid on the image, then select the M/N best pixels from
each grid cell, where N is the number of grid cells. This forces the selections to be spread evenly over
the whole image. For the selection within a cell, we again resort to Reeves’ SFS. We are evaluating
whether this method allows us to further reduce the overall number of pixels needed to accurately track.

2.3.4 The Selective Pixel Integration Tracker
The final tracking algorithm looks as follows:

Pre-compute the Jacobian images H for dX=0.

Pick a canonical prior knowledge covariance matrix P, and pixel noise covariance o?
Select the M best pixels for the template T, relative to P.

For each time step:

(a) Predict the state X, using a model for the dynamics.

bl ol o

(b) Inverse warp the M selected pixels to the template,
-1 .
Z; =h.,'(X0 )4 € {1M}

(¢) Calculate the error

e; = 2 — T(my),i € {1.M}
(d) Find the best dX” by solving (0~2 Hi Hyr + P~1)dX* = 072 H}e

where H, is the part of H corresponding to the M selected pixels.
(e) Calculate X* = Xy b dX*

() Iterate if necessary

Most of the computation is now done off-line, and none of the on-line computation involves more than
M pixels. The most expensive operations are the warp of the M pixels, and the computation of the

Hessian & = G"ZH;,,H 4+ P! The latter can also be precomputed if it can be guaranteed that all

M pixels will be within the region to which I has been warped. If this is not the case, one can still save
on computation by precomputing H,,” H,,, and subtracting the contribution for the relatively few pixels

that fall outside the valid set.

3. Discussion: Implications and Limitations

The implications of our new method are potentially far-reaching. Since we can dramatically reduce the
amount of computation spent on tracking, the CPU is freed to do other tasks that might otherwise have
been impossible to do within real-time constraints. In the next section we will present the outline of this
within a surveillance application.

In addition, we can increase the rate at which frames can be processed. Paradoxically, many tasks
actually become easier to do at higher rates, e.g. frame or field rate, as the image displacements become
smaller and easier to track over time, and we can use simpler motion models while still accurately




predicting what we should see in the next frame.

Finally, selective pixel integration provides an alternative to downsampling by working directly with the
image pixels, and reasoning about what each individual pixel can tell us about the state variables.

It is also important to understand the limitations of this method. Most importantly, it will only work in a
relatively small neighborhood around the true local minimum, as it depends crucially on the validity of
the Jacobian H. Further away from the minimum, at best the algorithm will have to iterate multiple
times, at worst it will diverge entirely. We feel, however, that this is not a significant limitation, as
accurate predictions is always a hallmark of real-time applications: the better the prediction, the less
computation needs to be expended.

There also a question of robustness: we have already remarked that the theoretically suporior method of
Reeves’ greedy selection scheme suffers from robustness problems when used with image based
tracking. The random selection method works quite well in our example application (see below), but
might integrate more pixel than strictly necessary. Indeed, in theory, 10 or 20 pixels should suffice to
track, and we do indeed see that happen with synthetic sequences. More work is needed in the case of
real images, though, to understand and model the noise and bring the number of pixels down even
further.

4. Application: Real-Time Pan-tilt Tracking for
VSAM

4.1 Motivation

The problem we address in this section is the detection of object motion from a continuously panning
and tilting video camera. Over the past two years there has been a great deal of computer vision research
devoted to automated video surveillance and monitoring (VSAM) [7]. A low-level task that is common
to all video surveillance systems is to automatically detect moving objects (people and vehicles), and to
track them as they move through the scene. Pan-tilt camera platforms can maximize the virtual field of
view of a single camera without the loss of resolution that accompanies a wide-angle lens, and allows
for active tracking of an object of interest through the scene.

Automatic detection of moving objects from a stationary video camera is easy, since simple methods
such as adaptive background subtraction or frame differencing work well. These methods are not
directly applicable to a camera that is panning and tilting since all image pixels are moving. However,
this situation is approximately described as a pure camera rotation, and the apparent motion of pixels
depends only on the camera motion, and not at all on the 3D structure of the scene. In this respect, the
problem we are addressing is much easier than if the camera were mounted on a moving vehicle
traveling through the scene.

At this time, adaptive background subtraction provides motion segmentation results with the least time
lag and most complete object boundaries [11,9,13]. The general idea is to maintain statistics about the
intensity or color values at each pixel in the image, and to gradually update these statistics over a
moving window in time to adapt to lighting variations. Each new image is compared to this ’reference’
image, and pixels that deviate significantly from their reference values are flagged as potentially




belonging to a new moving object. Object hypotheses are generated by performing connected
components on the changed pixels, followed by blob tracking between video frames.

We ultimately seek to generalize the use of adaptive background subtraction to handle panning and
tilting cameras, by representing a full spherical background model. There are two algorithmic tasks that
need to be performed: 1) background subtraction: as the camera pans and tilts, different parts of the full
spherical model are retrieved and subtracted to reveal the independently moving objects. 2) background
updating: as the camera revisits various parts of the full field of view, the background intensity statistics
in those areas must be updated.

Both tasks defined above, background subtraction and background updating, depend on knowing the
precise pointing direction of the sensor, or in other words, the mapping between pixels in the current
image and corresponding ’pixels’ in the background model. Although we can read the current pan and
tilt angles from encoders on the pan-tilt mechanism, this information is only reliable when the camera is
stationary. Due to unpredictable communication delays, we can not precisely know the pan-tilt readings
for a given image while the camera is moving. Our solution to this problem is to register the images to
the current background model in order to infer the correct pan-tilt values while the camera is rotating.

4.2 Implementation

4.2.1 Scene Representation




Figure 6. The collection of views that we used in one experiment. There.are 40 views in
total, with pan and tilt in the range 40:-20:100 and -4:-10:-44, respectively.The top-left
image is the pan=40, tilt=-4 image. (Click on the image for a closer look)

Maintaining a background model larger than the camera’s physical field of view entails representing the
scene as a collection of images [8]. In our case, an initial background model is collected by methodically
collecting a set of images with known pan-tilt settings. An example view set is shown in Figure 6. One
approach to building a background model from these images would be to stitch them together into a
spherical or cylindrical mosaic [8,12]. We choose instead to use the set of images directly, determining
which is the appropriate one to use based on the distance in pan-tilt space. The warping transformation
between the current image and a nearby reference image is therefore a simple planar projective
transformation, rather than a more time consuming trigonometric mapping to the surface of a sphere or
cylinder.

4.2.2 Pixel Selection

View 7: pan=-80iil=—4, 250 selacied




View 38; pan=-80 lili=—14, 250 selecied

Figure 7. Two example views with the selected pixels. The state variables to be optimized
are pan, tilt and roll.

For each of the views, the set of selected pixels for selective pixel integration is pre-computed, using the

random selection algorithm outlined above. Two example sets are shown in Figure 7. The canonical
prior we used had 1 degree standard deviation on pan and tilt, and 0.1 degrees on roll.

4.2.3 Tracking Pan and Tilt
Our tracking algorithm is described in detail below. For each time step, we:

1.  Predict X,,, the pan, tilt and roll for the input image I, using a motion model (described in detail in
the next section).

2.  Select the closest view T (in terms of pan and tilt)

3.  Calculate the approximate homography AT jtowarp T to L. Since we know the pan and tilt for the
view T, the calibration matrix K, and we have an estimate XO for the pan, tilt and roll of the current
image, we can calculate this homography as
AT =KR; R/ K
where Ry is the rotation matrix for the view T, and R, is the estimated rotation matrix for the input

image.
4.  Calculate the homography for the inverse warp, Al T= (AT 1)'1

5. Inverse warp the M selected pixels to T, according to Al - For each of the selected pixels m,




8.

where ¢ € {1..M}, we

(@) Calculate p; = Al 7 M, the corresponding image coordinate according to the projective warp
Al

(b) If p; is not within the bounds of I, we discard this selected pixel.

() Resample the image I at that coordinate p;, obtaining gi(AI 1-1), using either a bilinear or
Gaussian filter. Here g denotes the projective warp.

(d) Collect the resulting values in the measurement z

zi = gi(AL, I),i € {1.M}

(e) Collect the predicted values into the prediction y
v =T(m),i € {1..M}

() Calculate the error
(4 l:Zl—yl.

Optimize for the best incremental rotation dX* = [w, wy w,]’, by solving
(0-2Hi, Hyy + P~1) dX* = 0~2He

where H is the pre-computed Jacobian with respect to incremental pan, tilt and roll (see Figure 3).
The measurement function is a projective warp according to incremental pan, tilt and roll,
parametrized using the incremental rotation matrix

1 _wz Wy
R(dX)=R(wp,wp,w,) = | w, 1 —w,

Update the homography Al r and calculate X *. We can do this as

AL « KR(dX*)K1AL

The final estimated rotation matrix for the image I is then obtained by
R =R, KAl )1k

and X* = [pan tiltroll]’ can be easily calculated from R,.

Iterate if necessary

4.2.4 Multiple Model Prediction




A prerequisite for fast tracking and a necessary component to make selective pixel integration work is
adequate prediction. The selective pixel integration idea relies on the measurement Jacobian H, which
will only be valid within a small window near the actual minimum. In addition, the better the prediction,
the less iterations are necessary to converge to the minimum of the non-linear optimization criterion.

Figure 8. A ’ground truth’ sequence (see text on how it was obtained) showing the abrupt
changes of pan and tilt as a consequence of discontinuous user input, used to steer the
camera. Note that a constant velocity model will work fine except at the speed
discontinuities, where it fails dramatically.

In our prototype application, we are tracking manually steered pan-tilt movements, which is not an easy
case. The camera is controlled by keyboard interaction, using the four arrow keys found on a standard
keyboard. Pan is controlled by the horizontal arrows, tilt by the vertical arrows. Since this is essentially
binary control, the pan-tilt trajectories change abruptly. During a continuous movement, the tracking is
not hard, but coping with the trajectory changes is.

To deal with the problem of abrupt trajectory changes, we implemented a multiple model Kalman filter.
The velocity at which the pan and tilt changes is assumed known, but at each timestep there are three
different possibilities for pan and tilt: (U)p, (S)ame or (D)own. This makes for 9 different motion
models. The implementation closely follows the exposition in [1]. At each time step, we make a
prediction X, j for each model of the 9 models:




XOJZX(t—l)-f-QJ (11)

where Q_,- contains the hypothesized change in pan and titt for model j. The likelihood of each model is

obtained by warping a severely subsampled version of the image (20 by 15 pixels, indicated by I s and
T ) to the hypothesized location in the template, and evaluating the sum of squared errors:

E;= (h(Xy; 1 )-T ) (12)

The likelihood of model j given I is then (with B a temperature parameter):

P(L]5) = exp(—0.58E;) (13)
The posterior probability for each of the models is calculated based on the most likely model at the

previous time step and a matrix of transition probabilities Py See [1] for additional details. After this,
the model with the highest posterior probability is chosen for tracking.

4.3 Results

4.3.1 Evaluating Performance

(a) Camera Input (b) Selected View  (c) Registered image  (d) Difference Image

Figure 9. An embedded Quicktime movie showing a tracking sequence of 300 frames long
(click here for downloadable MPEG, AVI, and higher resolution versions). The movie is
divided in four panels: (a) The camera input shows what is seen by the camera during
panning and tilting. (b) The selected view shows one of the (in this case) 40 input views to




which the current image is actively registered. (c) The registered image is the camera input
after warping it to the selected view. (d) The difference image shows the difference between
(b) and (c).

We have tested this algorithm based on several sequences of 300 frames in length, and consistently
obtain tracking rates at about 60 frames per second, when integrating 250 pixels (M=250). This is with
quarter size images, obtained by grabbing images from the camera and subsampling them by pure
decimation.

To evaluate the performance of the algorithm, we do the frame-grabbing off-line, and store the images in
memory. We store the images in memory because of two reasons: first, at the time of writing we only
have a prototype system working, which is not yet integrated with our on-line frame-grabbing software.
We do not believe the overhead of image and memory I/O will significantly impact the timing results.
Second, we our method performs at much higher than frame rates, and when grabbing at a fixed
framerate we would have no way to assess the algorithm’s performance.

We then run the tracker, and note how long it takes to process all 300 frames. This is always around 5
seconds, with fluctuations because the number of iterations per frame might differ from frame to frame.
We are convinced that these preliminary performance figures can yet be improved upon, as part of our
research code still runs within MATLAB. We are currently porting the entire algorithm to C++.

-0 . ¢ X :" e

—m [} recmeann- Pan N ' —

—-—— i ,r

—_—— roll

Figure 10. Estimated pan, tilt and roll.




T T ) L ¥
1{——1_"5,—!’“--3——1";- ;~-—-—1——~~—"1;"l““'“,
Pyl !
0BF ¢ Pt P N
{ TE
Ly oy }
o8F £ 1| -
S 11 ! | :
o4l -
........ D ‘
o2fk|--- s I -
i
R — i
0 - v ) s s s e e et e e rrem e e o]
1 L 1 1 L
50 100 150 200 2850 200
1 1 1 ] ]
1_._..“.____.‘_.._...._.......__._..&. —1:--.:—--—-—1.-.--7——-——_——--—-———-1
? AT I A R I
oaf £ by H i
b Eog il
o8k b [ P .
B P [
04k P by it s
........ D i i i | it
] f i i
o2fbf--- 8 S i ot .
_— . I it
ol il N N i g —
] 1 I (] 1
5 100 150 200 250 300

Figure 11. Marginal posterior probabilities for the different motion models. The top panel shows the
posterior probability of three different models for pan: (U)p, (S)ame, and (D)own. The bottom panel
shows the same for tilt. Note the correspondence with Figure 10.

A video segment recording the tracking of a typical sequence is shown in Figure 9. The measured pan,
tilt and roll angles are shown in Figure 10. The posterior probability of each motion model is shown in
Figure 11.

4.3.2 Evaluating Tracking Accuracy




05 T 1 1 T 1

RN i i | n

: : |

) 2 k

L k4 t .
02 £ Broh e ‘ ; i ‘.
!\ ..Jl F“, w -.:” . H!,."".!-- -, e

B TR e A B SR , R e T
= s Y .

0 g :! UL T S S f

I | meoon 4

02} f g

B R R R RS

Al i -

0 50 100 150 200 250 300

Figure 12. Comparison with ground truth.

To evaluate the accuracy of the algorithm, we obtained *ground truth’ by running the tracker using
3-level pyramids of the images and the views, and using all pixels. Because of the hierarchical approach,
the initial estimates at higher-resolution levels are very good and high accuracy is obtained. Since we
use complete images up to a quarter size, this approach is slow but yields accurate results. The
comparison of the estimated pan-tilt-roll angles with the ground truth is shown in Figure 12. Most of the
noticeable spikes are associated with shifts between views.

5. Conclusion

We have presented a novel approach to obtaining better-than-frame-rate image-based tracking. It relies
on the selective integration of a small subset of pixels that contain a lot of information about the state
variables to be estimated. This dramatic decrease in the number of pixels to process results in a
substantial speedup of the basic tracking algorithm. We have used this new method within a surveillance
application, where it will enable new capabilities of the system, i.e. real-time, dynamic background
subtraction from a panning and tilting camera.

Appendix: Computing the Jacobian Images




The calculation of the Jacobian images is detailed by Dellaert [4]. Hager & Belhumeur have a similar
derivation in [6,5]. Our paper [4] is available on-line:

Jacobian Images of Super-Resolved Texture Maps for Model-Based Motion Estimation
and Tracking

F. Dellaert, S. Thrun, and C. Thorpe, IEEE Workshop on Applications of Computer Vision
(WACV’98), Princeton, New Jersey, October 19-21, 1998, pp. 2-7.

Download: pdf [262 KB], ps.gz [798 KB] copyrighted

In essence, the calculation amounts to a simple application of the chain rule: the Jacobian H at Xyis
defined as the partial derivative of h with respect to X, evaluated at X 0

Oh(X,T)

H{Xo) = —3

(14)

Xo

which is a 1 X 1 matrix, with m is the number of pixels in an image, and n the dimension of the state.

One entry H ij is the partial derivative of pixel AX,T) with respect to state variable X I;

ohi(X,T)

H;j(Xo) = ax,
J

(15)
Xo

If h(.,.) is a warp implemented by simple point sampling, h has the form h(X.T) = T(f(p;X),T), where f
is the coordinate transform that transforms image coordinate p; accoring to X into an template

- coordinate m=f(p;X). Itisa 2 X 1 vector valued function. Substituting this in equation (15) and

application of the chain rule gives:

oh(X, T aT , X 3 X
ry(x) = ED| _IGBX)) 0T 9630 -
3 Xo J Pi: Xo i Xo
where % is the 1 by 2 gradient vector of T, evaluated at m;, and Q%%‘f—q isthe2by 1
Flpi,Xo) pi, Xo

flow vector induced a change in X 2 evaluated at P; and XO.

Example

A graphical example is given below for a circular patch, texture mapped with a checkerboard pattern,




.

.

101

3D. The state variables involved are yaw,pitch,roll and 3D translat

ing in

and mov

The original texture mapped image, and its associated template gradient images.

Yheergy¥
“oa : 2
[ SO TN I R RPN
AR N Y
‘Avfan Y N A F S S
‘CSh Akl N
L UL N U L L B N g
AR S T T T T SN A A L
e S N N N L U N L R o P
—_————— - G e s ama
L P R A e e e I
e YR R NN
LI I D N R A O S S S
R N A Y L RN I N
NS N S N N
R N
IR RN RN
.._.I,..

—— e o v —
- e e e e e
B A e Y B
e @ e P8 oa oas s e
B e L N Y
B O L T N e S Y
e ol e ol e o o e ol e oo e ol mpe
L T T I R A
a a2 a4 1 s e e s s e ms e
P N I
g e . e = — — =
D R R R R T R R
LR S N L
& = » & & @ 2 @« F b b e kD
— o ——— i ety — -
B s e o

Fred b F ¥
I SRR O B SN )
LI I B B B
L L N

N B B B N N A A
FidF it Fd it rd i
L N U AR

-
-
~.
-
-
-
-
--
-
-,

vl

FRVRY SR Y BV SIS B R R
LIV I RN VA o S 3 O N
P L P
.\\\l‘.\ .\t\.\t\.« .\\._. ..\
R

- ———
“-a s aA e
[ P —
[ N R U NP,
faar 14404 AN e AN—
D T S S PN D
are e e wx 4w e
s s 8L L e s assads aaa
———— - ams . e A e
s 2as@maa s s 2eanwsw
f s s L Imaess a4 as2aaa
———— b b e ke b e h 4 s oa o
————p e e kA & s
———————t P RS A F = aom
——— e T
——s R E R B F P
———— o
-

A,

- ———

A it e o g “

RN R
.y

PN A U T
.q.‘.\._nc_‘\tr_.-
&.\‘h._hs.

4
,

e
. o,

R P
o e

X, Y, Z, yaw, pitch, and roll.

.

Induced flow fields for all state variables. From left to right

The six resulting Jacobian images. From left to right: X, Y, Z, yaw, pitch, and roll.




Bibliography

1 Y. Bar-Shalom and X. Li.
Estimation and Tracking: principles, techniques and software.
Yaakov Bar-Shalom (YBS), Storrs, CT, 1998.

2 J. R Bergen, P Anandan, Keith J Hanna, and Rajesh Hingorani.
Hierarchical model-based motion estimation.
In G Sandini, editor, Eur. Conf. on Computer Vision (ECCV). Springer-Verlag, 1992.

3 Frank Dellaert, Chuck Thorpe, and Sebastian Thrun.
Super-resolved tracking of planar surface patches.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 1998.

4 Frank Dellaert, Sebastian Thrun, and Chuck Thorpe.
Jacobian images of super-resolved texture maps for model-based motion estimation and tracking.
In IEEE Workshop on Applications of Computer Vision (WACV), 1998.

5 G. Hager and P. Belhumeur.
Efficient regions tracking with parametric models of geometry and illumination.
IEEE Trans. on Pattern Analysis and Machine Intelligence, October 1998.

6 G.D. Hager and P.N. Belhumeur.
Real time tracking of image regions with changes in geometry and illumination.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 403-410, 1996.

7 T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson.
Advances in cooperative multi-sensor video surveillance.
In DARPA Image Understanding Workshop (IUW), pages 3-24, 1998.

8 R. Kumar, P. Anandan, M. Irani, J. Bergen, and K. Hanna.
Representation of scenes from collections of images.
In Representation of Visual Scenes, 1995.

9 A Lipton, H. Fujiyosh, and R. Patil.
Moving target classification and tracking from real time video.
In IEEE Workshop on Applications of Computer Vision (WACV), pages 8-14, 1998.

10  S.J. Reeves.
Selection of observations in magnetic resonance spectroscopic imaging.
In Intl. Conf. on Image Processing (ICIP), 1995.

11 P. Rosin and T. Ellis.
Image difference threshold strategies and shadow detection.
In British Machine Vision Conference (BMVC), pages 347-356, 1995.

12 H.-Y. Shum and R. Szeliski.




Construction and refinement of panoramic mosaics with global and local alignment.
In Intl. Conf. on Computer Vision (ICCV), pages 953-958, Bombay, January 1998.

13  C. Stauffer and W.E.L. Grimson.
Adaptive background mixture models for real-time tracking.
In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 246-252,
1999.

About this document ...

Fast Image-Based Tracking
by Selective Pixel Integration

This document was generated using the LaTeX2uTML translator Version 98.1p1 release (March 2nd,
1998)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning Unit, University
of Leeds.

The command line arguments were:
latex2html -split 0 -show_section numbers -local_icons -no_navigation framerate.tex.

The translation was initiated by on 1999-08-26

1999-08-26




Local Application of Optic Flow to Analyse Rigid versus Non-Rigid Motion

Alan J. Lipton
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213
email: ajl@cs.cmu.edu, URL: http://www.cs.cmu.edu/~ vsam

Abstract

Optic flow has been a research topic of interest for many
years. It has, until recently, been largely inapplicable to
real-time video applications due to its computationally ex-
pensive nature. This paper presents a new, reliable flow
technique called dynamic region matching, based on the
work of Anandan[1], Lucas and Kanade[10] and Okutomi
and Kanade[11], which can be combined with a motion de-
tection algorithm (from stationary or stabilised camera im-
age streams) to allow flow-based analyses of moving enti-
ties in real-time. If flow vectors need only be calculated for
“moving” pixels, then the computation time is greatly re-
duced, making it applicable to real-time implementation on
modest computational platforms (such as standard Pentium
I based PCs).

Applying this flow technique to moving entities provides
some straightforward primitives for analysing the motion
of those objects. Specifically, in this paper, methods are
presented for: analysing rigidity and cyclic motion using
residual flow; and determining self-occlusion and disam-
biguating multiple, mutually occluding entities using pixel
contention.

Keywords: optic flow, motion analysis, tracking

1 Introduction

Analysing the motion of entities in a video stream is an
important, current research challenge. Groups such as the
entertainment industry use motion captured from video im-
agery to generate computer graphic characters and avatars
for movies, computer games, and web-based applications.
These motion capture techniques usually require a large in-
vestment of operator time and effort. As applications be-
come more interactive, it will be increasingly important to
automate the analysis of moving objects in real time. In
applications such as automated video surveillance[7], it is
essential to be able to understand the different motions of
objects and infer their behaviours - such as the difference
between two joggers meeting in a park, and a mugging.

Presented in this paper is a new strategy for divining
some low-level motion parameters in real-time from enti-
ties in video streams. A new optic flow technique called dy-
namic region matching is applied locally to blobs extracted
using an adaptive background subtraction motion detection
algorithm[4]. Computing flow only for “moving” pixels
allows real-time implementation on even modest compu-

tational platforms (such as Pentium II PCs). The result-
ing local flow fields can be used to analyse the motions of
those blobs. Specifically, this technique is used to deter-
mine rigidity of motion, determine self-occlusion, and dis-
ambiguate mutually occluding moving objects.

1.1 Optic Flow

Optic flow techniques are traditionally used to determine
camera motion or reconstruct 3D scene structure. In these
cases, only the gross flow of large scene components is re-
quired and real-time performance is not necessary. Conse-
quently, most flow techniques provide sparse results over an
entire image or are extremely computationally expensive.
Furthermore, most algorithms fail in largely homogeneous
regions (ie. regions lacking texture). Although Anandan{1]
provides a measure for determining just how bad a flow vec-
tor is, most algorithms make no effort to improve flow vec-
tors in homogeneous regions.

Barron, Fleet, and Beauchemin{2] divide flow tech-
niques into four categories: differential methods; region-
based matching; energy-based; and phase-based. Of these,
the most amenable to real-time implementation are the dif-
ferential methods and the region-based matching methods.
The differential methods such as Lucas and Kanade[10] ef-
fectively track intensity gradients in the scene. The advan-
tage of this is that reliable flow vectors can be determined
based on the information (measured by intensity gradient)
content of a scene. However, one of the assumptions behind
this method is that there is no deformation in the objects in
the scene. Clearly an unreasonable assumption when deter-
mining the motion of a entity like a human being. Region-
based matching techniques such as Anandan[1] track small
regions in the scene from frame to frame. These methods
are more robust to deformable objects, but are susceptible
to large errors where there is little texture in the scene.

1.2 Motion Analysis

The ultimate goal of motion analysis is to describe activ-
ities occurring in video streams. Primitive analyses have
concentrated on simply determining the rigidity of mov-
ing objects as a precursor to more complex recognition
schemes[13]. Others go further and attempt to fit models
(2D or 3D) to objects[5, 8] in order to analyse their mo-
tions. More complex schemes attempt to interpret and char-
acterise particular motions[4, 3] such as walking, running,
sitting, doing push-ups, etc.




With reliable flow vectors for every pixel in a blob it
becomes possible to track individual pixels from frame to
frame. This capability can be employed to cluster pixels
into “body parts” for model-based motion analyses (such
as pfinder[14] and W*[5]). It also means that an object’s
rigidity can be determined by calculating residual flow —
that is the motion of “body parts” relative to the blob’s gross
motion. It is clear that a human or animal will have limbs
moving relative to each other and to the gross body mo-
tion whereas a vehicle will not. By clustering residual flow
vectors, it is even possible to extract these “body parts”. Fi-
nally, a property called pixel contention is introduced in this
paper to analyse occlusion. When flow is computed for an
object that is occluded either through self-occlusion (such
as an arm swinging in front of the body) or by another body
(such as a person walking behind something else), some
of the pixels will “disappear” from one frame to the next
causing competition between pixels or invalid flow vectors.
This pixel contention can be measured and used to deter-
mine when such occlusions are occurring.

Section 2 of this paper describes blob detection and
tracking. Section 3 describes the new dynamic region
matching algorithm for computing a dense flow field within
the pixels of a moving entity. Section 4 describes how resid-
ual flow can be used to determine the rigidity of a moving
object. Section 5 describes the pixel contention measure of
occlusion and explains how it can be applied to determine
self-occlusion within an object or mutual occlusion between
two objects.

2 Detection and Tracking of Moving Blobs

Figure 1. Moving blobs are extracted from a video
image.

Detection of blobs in a video stream is performed by
the method described in [4]. This is basically a process of
background subtraction using a dynamically updating back-
ground model.

Firstly, each frame is smoothed with a 3 x 3 Gaussian
filter to remove video noise. The background model B, (z)

is initialised by setting By = Iy. After this, for each frame,
a binary motion mask image M, () is generated containing
all moving pixels

1, a(®) = Bao1(2)] > T
Mn(z) = { 0, EInEx; - Bn_lgzcg[ <T M

Where T is an appropriate threshold. After this, non-
moving pixels are updated using an IIR filter to reflect
changes in the scene (such as illumination)

_ Bn—l(x)’ =

where o is the filter’s time constant parameter. “Mov-
ing” pixels are aggregated using a connected component
approach so that individual blobs can be extracted. An ex-
ample of these extracted blobs is shown in figure 1.

Tracking a blob from frame to frame is done by the tem-
plate matching method described in [9]. The important fea-
ture of this tracker is that, unlike traditional template track-
ing which has a tendency to “drift” when the background
becomes highly textured, this method only matches pixels
which have been identified as “moving” by the motion de-
tection stage - thus making it more robust.

2.1 Tracking Through Occlusion

When two objects being tracked are predicted to occlude
(2Bo + VBodt) ~ (xp1 + Up10t) 3)

(where xpo, ¥Bo, £p1 and ¥p; are the positions and ve-
locities of the two objects respectively, and 6t is the time
between consecutive frames) it becomes hard to track them
using the template matching algorithm of [9], not because
the template matching fails, but because it becomes difficult
to update a template as it will be corrupted by pixels from
the other object. In fact, when two blobs are close to oc-
cluding, the motion detection algorithm will detect them as
only a single blob!

The problem can be addressed by storing the previous
views of each object over time. When an occlusion is about
to occur, synthetic templates can be generated to use in the
template matching process. If the object is determined to
be rigid by the method of section 4, then the latest view
is used as a synthetic template while the occlusion is oc-
curring. On the other hand, if the object is determined to
be non-rigid, then its periodicity is determined by a pro-
cess akin to Selinger and Wixson[13]. The latest view is
matched with the previous views to find the best synthetic
template. Then, as the occlusion continues, new synthetic
templates are generated by stepping through the list of pre-
vious views.




———————————
Synthetic templates
|

Figure 2. Two examples of tracking through occlusion. The blobs are tracked using synthetic templates derived from

previous views

An example of this procedure is shown in figure 3. While
the occlusion lasts, blobs from previous views of the ob-
ject are substituted for the potentially corrupted data. These
synthetic blobs are used for matching until the occlusion is
Over.

Figure 2 shows two examples of tracking through occlu-
sion. In both cases synthetic templates are derived from
previous views of both blobs and thus they can be disam-
biguated even when they are in the process of occluding.
Pixels tinted red belong to the occluding object, and pixels
tinted blue belong to the occluded object.

3 Optic Flow by Dynamic Region Matching

To analyse the motion of a character in a video stream it
is necessary to acquire a dense, accurate flow field over that
object, perhaps even a flow vector at every pixel. To obtain
a legitimate flow vector for every pixel in an area, region-
based matching is the obvious choice. But to make sure
the flow vectors are realistic, it is necessary to have enough
texture in the region to ensure a good match. This can be
achieved by using a dynamic region size similar to the ap-
proach of Okutomi and Kanade[12]. The idea is to use edge
gradients as a measure of information and, at every pixel
position, grow the support region until there is enough edge
gradient information to justify matching. Furthermore, flow
needs to be computed only for pixels contained within the
moving object. Consequently, this particular implementa-
tion is only valid for video streams derived from stationary
cameras, or streams which have been stabilised.

3.1 The Region Matching Algorithm

Consider a stabilised video stream or a stationary video
camera viewing a scene. The returned image stream is de-
noted I, (z) where I is a pixel intensity value, n is the frame
number and z represents a pixel position in the image (7, 7).

If images in the stream are §t (time) apart, then a particular
pixel in the image will move by a distance ¥(z)dt where
#(z) = (vi(z),v;j(x)) is the 2D image velocity of that
pixel. This can be found by matching a region in I, to it’s
equivalentregion in J,, 1 by minimising a distance function
D(z; d) where d represents a linear translation (d;, d;).
Firstly, aregion W (z) I, () is defined by multiplying I,,
with a 2D windowing function W(z) of size (W;, W;) cen-
tered on pixel z. This region is then convolved with the next
image in the stream I, to produce a correlation surface
D(z; d). The range of values over which the convolution is
performed d € [dy, d1] must be specified. '

i=W; i=W; . . .. . .
; IW(Z,])In(Z,])——-In+1(($,])+d)|
D(z;d) =
=X 2 W)l
Q)
where ||W (z)|| is a normalisation constant given by
. i=W,; j=W;
W@l= > > Wi )
i=1 j=1

Figure 4 shows a typical correlation surface for a re-
gion match. The minimum of D(xz;d) is then computed
to sub-pixel accuracy by approximating the surface with a
quadratic function D(z; d).

The true pixel displacement dp,in is taken as the mini-
mum of the approximate surface

dmin = m}n D(z;d) (= 9(z)dt) ©)

3.2 Computing Local Flow

Having established a track between a blob €2, in I, and
a blob Q41 in I, 41 and the gross velocity vp (from the
tracker) between them, it is possible to determine the flow
of every “moving” pixel. The idea is to take a small region
around each pixel in §2,, and match it with its equivalent




Current view

atching Template with Previous Views

Min D{x:d)
g

o

-0 50 ©® 70 ° %0 100 1"
Frame Number

Figure 3. Template matching the current view of a
blob with previous views allows a synthetic template
to be used when it is occluded.

regionin Q,,41. The method used is similar to Anandan’s[1]
method with several distinctions. Anandan uses a pyramid
to perform matching. In this implementation, a pyramid
is unnecessary as the number of pixels for which flow is
computed is not large. In Anandan’s work, the Laplacian
of the image is used. This provides a confidence measure
for each flow vector. If there is not enough information in
a region, the confidence on the flow vector is low. In this
implementation, the image itself is used and confidence is
measured using the content of the region. Anandan uses
fixed 3 x 3 regions for matching. Here, as in Okutomi and
Kanade[11], the regions are dynamic and are grown until
there is enough information to ensure a reliable match.

The flow computation per pixel is a two-pass process.
Firstly, an appropriate support region is found to ensure that
enough information is present to obtain a valid flow vector.
And then a region matching is performed to compute the
flow vector.

3.2.1 Computing the Support Region

To ensure a good match between regions, it is essential that
enough information is available in both horizontal and verti-
cal directions around the central pixel z. So a support region

Negative Correlation Surface [-D(x;d)]

Normalised Correlation
1 1
& & 5

2 &

Figure 4. A typical correlation surface (inverted for
easier viewing)

Blob “Vertical" Inf

Inadequate

Adequate

Adequate

Adequate

Figure 5. Growing the region around a pixel to en-
sure adequate information content in both vertical
and horizontal directions.

around x is iteratively grown and the enclosed information
content is measured until it reaches a predetermined thresh-
old T7. To measure horizontal and vertical information, a
Sobel filter is used. Prior to the matching process, two im-
ages Sy (z) and Sy () are computed from I,, by filtering
using the standard Sobel operators.

1 0 -1
Sp(g)=12 0 -2 | xI,(x)
1 0 -1
1 2 1 ™
Sv(z) = 0 0 0 |=*(z)
-1 -2 -1

Starting with a 3 x 3 support window W (z) centered on
z two information measures are calculated: vertical image
information Ey ; and horizontal image information Ey

Ey = Z Z W(4,5)SH (i, ) 8)




By =YY W(i,7)Sv (i) ©)
i J

The algorithm for determining the ultimate window size
is as follows

Do
Calculate EFy by equation 8
Calculate Ey by equation 9
HEg <1
Increase W; by 2 pixels
KEy <Tp
Increase W; by 2 pixels
Until both Ey and Ey are > T

Figure 5 shows a graphical representation of how the al-
gorithm is applied to select an appropriate support region
around a pixel.

3.2.2 Computing the Flow Vector

Motion of individual pixels can be modeled as as the gross
motion of the blob vp plus some residual pixel motion
17}2(.’13)‘ Thus

’U(.’L‘) = v+ 173(:11) (10)

If it is assumed that the residual motion of pixels within
Q,, is not very great, then the correlation surface D(z;d)
to compute the flow vector for a given pixel z need only be
evaluated over a small range around d = vpdt.

Using the 2D windowing function W (z) as determined
by the algorithm of section 3.2.1, the flow #(x) for pixel z
can be computed using the method of section 3.1. One limi-
tation of this method is that background texture can corrupt
the flow vector calculation. To ameliorate this, the elements
of W(z) can be weighted to give preference to “moving”
pixels (expressed as a binary image M, ), for example

W (z) = W(z)(1 + Ma(z)) 11)

Anandan[1] uses the curvature of the correlation surface
around the minimum as a measure of confidence in the flow
vector. This is a reasonable choice if the information con-
tent of the region is unknown. Homogeneous regions will
be characterised by correlation surfaces with high radii of
curvature (infinite in the ultimate case). However, in this
implementation, the information content is known, so a sim-
pler metric for confidence is used. Here, the value of the
correlation surface’s minimum Dy, (z; d) is taken as a con-
fidence measure. Regions which match well will have low
values of Dnin(z; d) whereas regions which do not match
well will have higher values. This property can be used
in outlier rejection and to calculate pixel contention as in
section 5. Figure 6 shows the flow fields and confidence
measures for two different blobs.

4 Rigidity Analysis by Residual Flow

Given the gross motion of the moving body 7 as cal-
culated in section 2, and the flow field #(z) for all of the
pixels in that body, it is possible to determine the velocity
of the pixels relative to the body’s motion #r(x) by simply
subtracting off the gross motion

63(:1:) = 17(:6) - 173 (12)

to find the residual flow.

It is expected that rigid objects would present little resid-
ual flow whereas a non-rigid body such as a human being
would present more independent motion. When the average
absolute residual flow per pixel

Yy Tr(z)
=== (13)

TR =

(where X is the number of pixels in the blob) is calculated,
it not only provides a clue to the rigidity of the object’s mo-
tion, but also its periodicity. Rigid objects such as vehicles
display extremely low values of tr whereas moving objects
such as humans display significantly more residual flow that
even displays a periodic component.

Figure 7(a) shows the residual flow from two objects.
Clearly, there is a large amount of independent pixel mo-
tion in the case of the human, and there is almost none in
the case of the vehicle. A simple clustering based on his-
togramming the residual flow vectors clearly shows group-
ings of these flow vectors and could facilitate the extraction
of “body parts” such as arms and legs. Figure 7(b) shows
how residual flow can be used a measure of rigidity for hu-
mans and vehicles.

5 Occlusion Analysis by Pixel Contention

Many researchers have noted problems with tracking ob-
jects or their component parts through occlusions. One of
the big selling points of the Condensation algorithm of Isard
and Blake[6] is that it successfully tracks objects’ shapes
through deformations and occlusions. The patterns of optic
flow can also be used as a key to object occlusions, whether
they be caused by self-occlusion, or occlusion with other
bodies. A pixel contention metric can be used to detect
when occlusion is occuring, and even extract the spatial or-
dering. The object in front will display less pixel contention
than the object in the rear.

When occlusions happen in the 3D world, they appear as
2D deformations. 2D deformation also occurs if the object
changes size or “looms”. In this paper, only occlusion is
considered. When this occurs, the total number of pixels on
the object decreases and there is contention between pixels




Flow for *Moving" Pixels

Flow Vector Confidence

Flow Vector Confidence

Figure 6. The flow fields and confidence values for two different blobs. Notice that confidence is higher on the edges

of the figures where information content is greater.

for good matches as shown in figure 8. In some cases, mul-
tiple pixels in I,, match with single pixels in I,, 41, and in
others, pixels in I,, do not have good matches in I, ;. This
pixel contention property P, provides a good measure of oc-
clusion. Pixel contention can be measured by counting the
number of pixels in 2, which either have flow vectors ter-
minating at a common pixel of 2,1, or are poorly matched
to pixels of 2, ;1. This value can be normalised by dividing
by the size X of Q. A contended pixel z. exists if

] zo + U(zg)dt = =z,
3(1‘0,131) ’ { z, + 17(.’61)(5‘[ = 2. (14)

or
min D(z.;d) > T, (15)
where T; is a threshold for determining a valid region

match. And
#{xc}

X

When the first condition occurs (equation 14) the flow
vector is chosen which minimises the D(z; d)s. That is, the
vector £ — x. is chosen such that

P, =

(16)

z = n}vin [D(z0; d), D(z1; d)) a7n

When the second condition occurs (equation 15) the flow
vector for that pixel is simply ignored.

When applying pixel contention to a single target, it is
observed that rigid bodies, such as vehicles, do not exhibit
as much as non-rigid bodies, such as humans. Also, it is
observed that if P, is measured over time, it peaks when

significant self-occlusions are occurring as shown in figure
9.

5.1 Occlusion by a Second Object

If two objects © and w are occluding, it is important to
know their spatial ordering. As with self-occlusion, it is
expected that the occluded object will have a greater pixel
contention than the foreground one. However, the absolute
number of contended pixels may not be a good measure if
one object is very large compared to the other, so pixel con-
tention should be normalised with respect to the expected
pixel contention for that object.

While the occlusion is occurring, the occluding pixel
contention P, is calculated for each of Q and w and nor-
malised with respect to the average pixel contention for that
blob measured prior to the occlusion. If P.q and P,,, are
the expected pixel contentions of Q and w respectively, then
a normalised occluding pixel contention P, can be deter-
mined for each

P, = o (18)
The blob with the larger vatue of normalised occluding
pixel contention is taken as the occluded blob and the lower
value of P, is taken as the occluder. Figure 10 shows the
normalised pixel contention measures for the two examples
of figure 2. It is clear in both cases, that the background
object displays a larger pixel contention than the foreground
object as expected.

6 Discussion and Conclusions

Optic flow has been a research topic of interest for many
years. It has, until recently, been largely inapplicable to
real-time video applications due to its computationally ex-
pensive nature. This paper has shown how a new, reliable




< @ ~
v

Avergge Rgsidual Flow

(b)

Figure 7. (a) The residual flow computed for the

two blobs of figure 6. Also, a primitive clustering is
shown. Clearly, arms and legs are apparent in the hu-
man clustering whereas only one significant cluster is
visible for the vehicle. (b) The rigidity measure Tg
calculated over time. Clearly the human has a higher
average residual flow and is thus less rigid. It also
displays the periodic nature that would be expected
for a human moving with a constant gait.

—lJ

-

T

Figure 8. When two objects occlude, pixels become
contended (shown hashed). Measuring the number of
such pixels can be used to measure occlusion.

flow technique called dynamic region matching can be com-
bined with a motion detection algorithm (from stationary or
stabilised camera streams) to allow flow-based analyses of
moving entities in real-time. If flow vectors need only be
calculated for “moving” pixels, then the computation time
is greatly reduced, making it applicable to real-time im-
plementation on modest computational platforms (such as
standard Pentium II based PCs). However, the issue of de-
tecting moving entities from mobile camera video streams
remains a challenge. The procedure is outlined in figure 11

Using an Anandan[1] type of region matching algorithm
with Okutomi and Kanade[11] dynamic support regions al-
lows a very accurate computation of visual flow from even
very homogeneous regions on the moving object’s surface.

Once optic flow has been calculated, it can be used to
provide some motion analysis primitives. The residual flow
(see section 4) can be used as a measure of the object’s
rigidity. These flow vectors can even be used to grossly
segment the object for further region-based or model-based
processing. Also, using the flow vectors to determine pixel
contention (see section 5) provides a measure of an object’s
self-occlusion, and even aids in tracking objects while they
are mutually occluding each other by providing a measure
of spatial ordering.

The template matching process described requires
O(N?) operations per region, where N is the number of
moving pixels. This part of the procedure is clearly the com-
putational bottleneck. If a different tracking scheme was
used, it could conceivably greatly reduce the method’s over-
all computational load. However, if the number of moving
pixels in a rectangular region is approximately half of the
total number of pixels (which is reasonable) then using this
approach reduces the computational complexity by a factor




Seif-Occlusion by Pixel Contention

Pixel Contention (Pc)

e we 62 164 168 16 170
Frame Number

Figure 9. Pixel Contention fo measure self-
occlusion. Here, the value of P, rises considerably
as parts of the human, such as arms and legs, start to
occlude.

of 4 over traditional template matching schemes. The com-
plexity of the optical flow technique is linear in the number
of moving pixels so does not become excessively unwieldy
for large objects.

The presented procedure was employed on 12 video se-
quences from thermal sensors and 15 video sequences from
daylight sensors. The sequences totalled 721 seconds and
contained 47 independently moving objects. 7 false alarms
were detected in the daylight imagery. These consisted of
1 case in which a tree was blown by wind, and 6 cases in
which reflections of moving objects in windows cause false
alarms. No false alarms were detected in the thermal im-
agery. Track continuity was maintained in all but 19 image
frames. In each of these cases, the tracker re-acquired the
target on the subsequent frame. The sequences contained 19
occlusions, all of which were correctly identified and track-
ing maintained through the occlusion. Admittedly, these
sequences were taken under controlled conditions — it is
still required to attempt this method on a wider variety of
realistic surveillance imagery.

On an SGI O2 with a R10K processor, the entire pro-
cess of detection, template matching, and flow computation
ran at >4Hz on 320x240 monochrome images containing
no more than 2 targets of <400 moving pixels. It is ex-
pected that optimising for MMX on faster commercial PC’s,
a greater performance could be achieved.

References

[1] P. Anandan. A computational framework and an algorithm
for the measurement of visual motion. International Journal
of Computer Vision, 2:283-310, 1989.

Pixel Contention for Human/Vehicle Occlusion

25 T T T T

s Human
Vehicle

8

&

S

Pixel Contention (Po)

2 :
200 250 300 350
Frame Number

1
100 150

Pixel Contention for Human/Human Occlusion
12 T T T T T T T

Foreground Huma|
Background Huma

Pixel Contention (Po)
,,

H H H i
80 90 100 110 120 130 140 150 160
Frame Number

Figure 10. Pixel Contention for the two occlusion ex-
amples of figure 2. As the vehicle is occluded, the nor-
malised number of contended pixels increases well
beyond the human. When the two humans are occlud-
ing, the occluded human displays a greater number
of contended pixels. Note that at the moment of maxi-
mum occlusion, the pixel contention of the occluding
human drops to a local minimum as it almost totally
obscures the background human.




(2]

3]

(4]

(5]

(6]

(7

(8]

9]

(10]

[11]

[12]

oving targe
detection

Figure 11. The entire tracking procedure.

J. Barron, D. Fleet, and S. Beauchemin. Performance of
optical flow techniques. International Journal of Computer
Vision, 12(1):42-77, 1994.

J. Davis and A. Bobick. The representation and recognition
of human movement using temporal templates. In Proceed-
ings of IEEE CVPR 97, pages 928 — 934, 1997.

H. Fujiyoshi and A. Lipton. Real-time human motion anal-
ysis by image skeletonization. In Proceedings of IEEE
WACV9S, pages 15-21, 1998.

1. Haritaoglu, L. S. Davis, and D. Harwood. w* who? when?
where? what? a real time system for detecing and tracking
people. In FGR98 (submitted), 1998.

M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. In Proceedings of European
Conference on Computer Vision 96, pages 343356, 1996.

T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson.

Advances in cooperative multisensor video surveillance. In
Proceedings of DARPA Image Understanding Workshop,
volume 1, pages 3-24, November 1998.

D. Koller, K. Daniilidis, and H. Nagel. Model-based ob-
ject tracking in monocular image sequences of road traf-
fic scenes. International Journal of Computer Vision,
10(3):257-281, 1993.

A. Lipton, H. Fujiyoshi, and R. S. Patil. Moving target de-
tection and classification from real-time video. In Proceed-
ings of IEEE WACV98, pages 8-14, 1998.

B. Lucas and T. Kanade. An interative image registration
technique with an application to stereo vision. In Proceed-
ings of DARPA Image Understanding Workshop,pages 121—
130, 1981.

M. Okutomi and T. Kanade. A multiple-baseline stereo.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 15(4), 1993.

M. Okutomi and T. Kanade. A locally adaptive window for
signal matching. International Journal of Computer Vision,
7(2):143-162, 1994,

[13] A. Selinger and L. Wixson. Classifying moving objects as

rigid or non-rigid without correspondences. In Proceedings
of DARPA Image Understanding Workshop, volume 1, pages
341-358, November 1998.

[14] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.

Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780-785, 1997.




Virtual Postman — Real-Time, Interactive Virtual Video

Alan J. Lipton
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213
email: ajl@cs.cmu.edu, URL: http://www.cs.cmu.edu/” vsam

Abstract

This paper presents a new paradigm for data interaction
called virtual video. The concept is that video streams can
be interactively augmented in real-time by both addition
and removal of visual information. Removed information
must be seamlessly replaced with relevant “background”
information. Added information can be in the form of com-
puter graphics, as in conventional augmented reality, or im-
agery derived from the video stream itself. Adding video-
derived imagery means that a “real” character can be sim-
ulated in different places or times in the video stream, or
interacting (fictitiously) with other characters. Achieving
this requires an understanding of the motion and appear-
ance of the target character so that it can be realistically
inserted.

Video understanding technology is now sufficiently ad-
vanced to make interactive, real-time virtual video a pos-
sibility. An example is given in the form a computer game
called Virtual Postman in which moving characters detected
in a video stream can be “killed” and thus removed from
that stream. Furthermore, characters detected in the video
stream are stored, analysed for rigid or periodic motion and
then smoothly re-inserted into the video stream at arbitrary
places, times and scales as “clones” of live characters, or
“zombies” of dead ones. :

Keywords: Computer vision, image analysis, virtual
video, augmented reality.

1 Introduction

Augmented reality has been a research topic in the vi-
sion community for some time. The notion is that video im-
agery can be augmented by accurately registered computer
graphics. Computerised X-Ray vision[3], or video assisted
surgery are two examples of this. However, as the field of
video understanding[13][12] matures, it becomes increas-
ingly possible to analyse and interact with real-time video-
derived data directly.

Virtual video (as coined by the author) is the idea that
video streams can be interactively altered in real-time so
that they can be treated as virtual worlds into which objects

can be interactively inserted or removed at will. Further-
more, augmentations to the video stream can be derived di-
rectly from the video stream, rather than being solely com-
puter generated. Thus, “real” objects can appear to move
through space or time in a synthetic manner. An example
would be moving a building from one place to another in a
video scene; or have a person appear 10 minutes after s/he
actually walked through the scene. A more complex exam-
ple is to create a synthetic character based on the actions
and appearance of a real one and, at some point, seamlessly
replace the real with the synthetic.

Applications for this technology are legion in fields such
as video-teleconferencing, surveillance, and entertainment.
This paper presents an illustrative example of a virtual video
system in the form of a computer game called Virtual Post-
man. The significant point is that a real-time video stream
can itself become a playing field on which the player inter-
acts directly with both real and synthetic objects.

In Virtual Postman, a camera is pointed at a generic
scene, either indoor or outdoor, and the video stream is
viewed by a player on a desktop computer. Moving objects
such as vehicles and people are detected and presented to
the player as “targets”. The player can then simulate shoot-
ing the targets which appear to expire in computer gener-
ated explosions. “Dead” targets are synthetically removed
from the video stream in real-time. Furthermore, these tar-
gets can, at random, synthetically be brought back to “life”
as zombies enhanced by computer graphics and re-inserted
into the video stream at any position or time. This concept
is similar to one suggested by Scott Adams (of Dilbert(tm)
fame) in his latest book[1].

1.1 Video in Games

One of the long-time goals of the entertainment indus-
try is the creation of realism. To achieve this, the movie
industry has made a great investment in computer graphics
to create realistic false images. Conversely, the computer
game industry has been integrating photo-realistic still im-
agery and video to enhance the player’s experience. To date,
this integration has been largely non-interactive using only
“canned” video sequences to achieve little more than setting
atmosphere.




Early examples of the use of imagery in games used still
images or canned video sequences as a backdrop to the ac-
tion, with computer generated characters overlaid, not re-
ally partaking of the imagery. A slightly more interactive
use of video is displayed in more recent games such as
Return to Zork(tm) and Myst(tm) in which short, relevant
video sequences provide the player with timely information
or atmosphere. The most interactive use of video has been
in video-disc based games such as Dragon’s Lair(tm), in
which the game itself is made up of small image sequences,
each containing a small problem or challenge. Based on the
player’s choice, the next appropriate video sequence is se-
lected (exploiting the fast random access time available to
the video-disc medium) providing the next challenge.

There has been some effort made to use video interac-
tively, most notably as an input device. There exist compa-
nies that produce games based on blue screen technology.
Real players are inserted into a virtual environment to per-
form simple actions like tending a virtual soccer goal, or
shooting virtual baskets. These games require considerable
infrastructure. The player must wear distinguishing cloth-
ing such as green gloves so that the computer can recognise
body parts, and the game is played out on a large blue screen
stage. More modest applications of this type run on desktop
computers such as SGI’s Lumbus(tm) in which the Indy-
Cam is used for simple head or hand tracking to control a
plant-like creature called a “Lumbus” in 3D. Using virtual
video provides a means, for the first time, of using real-time,
live video interactively as a game playing field.

2 A Virtual Video Architecture

The two fundamental challenges of virtual video are
the ability to seamlessly remove characters from a video
stream and the ability to seamlessly add synthetic char-
acters to a video stream. Note that synthetic characters
can be derived from the video stream itself and, thus, their
motion must be understood in order to re-create them accu-
rately in different times and places. Figure 1 shows a po-
tential architecture for a virtual video application. An input
video stream is segmented into background and foreground
regions which can be archived for later use. A virtual video
image can be built by combining background, foreground,
and synthetic components into a coherent image. Synthetic
components may be derived from the video stream at some
previous time (such as background data which must be used
to “fill in the blanks” left behind by some “dead” character,
or previously seen characters which are being brought back
from the dead); or they may be completely computer gener-
ated.

Some of the specific research challenges of a virtual
video architecture are: segmentation of a video stream into
a background and a set of foreground characters; track-

ing foreground characters and disambiguating them as they
interact with each other and the background; removing
characters from the video stream and seamlessly replac-
ing them with appropriate background (or other foreground)
imagery; and analysing the motion of real characters so they
may be inserted as required as realistic synthetic characters.
Furthermore, all of this must be done automatically in real-
time by appropriate computer vision techniques!

For this application, foreground objects are considered
to be moving characters such as people and vehicles. There
is a great store of techniques for extracting moving objects
from imagery. Some approaches are model-based, such as
[14][20], that look for specific types of objects. More gen-
eral motion detection schemes are outlined in [4][9]. The
most promising approaches use dynamically adaptive back-
ground subtraction{5][7]. These are preferred for two rea-
sons: they provide the most complete extraction of moving
objects; and a by-product of motion detection is a model of
the scene background which can be used to replace “dead”
foreground characters! The method used here is taken
from[5] and is described briefly in section 3.

Tracking characters is an important component of the
virtual video architecture. The system must be able to dis-
tinguish all the different characters in a scene to ensure that
a “dead” character does not accidentally become reinstated.
To achieve this, it is necessary to track characters through
occlusion with other characters, or background objects. A
great deal of work has been done on tracking. The most
common current methods in computer vision are Kalman
filters[11] and the CONDENSATION algorithm[10]. In
fact one of the claims to fame of CONDENSATION is its
ability to track multiple objects through occlusion. How-
ever, in this application, given that video-derived charac-
ters are being tracked, a template matching solution[15] is
used and described in section 4. An extension to the track-
ing algorithm for tracking multiple objects through occlu-
sion is described in [16]. One by-product of this tracking
scheme is that, as characters are tracked, templates can be
collected showing visual variability over time. These image
sequences are useful for synthetic character generation.

There are several situations when it is necessary to in-
sert synthetic characters into the virtual video stream in the
context of Virtual Postman. Obviously, when a “dead” char-
acter is brought back to life, it must appear to interact with
the environment in a realistic manner. A more subtle situa-
tion is when a “live” character is occluded by a “dead” one.
Here, there is no imagery in the video stream to represent
the character, so synthetic imagery must be inserted to con-
nect the real segments without apparent discontinuity. To
achieve this, it is necessary to model the appearance of the
character’s motion. Modeling the motion of humans and
vehicles is a topic of great interest to both the vision and
graphics community. Gavrila[6] provides an excellent sur-




Video
\\Stream

Foreground/

Filter

Archived
Foreground
Components

v t
! Computer |
E Generatedg
! Character

]
]
’

Background —— Ji

Background

|

ml

Archived
Background
Components

Synthetic Character
Derived from Video

Real and Synthetic |
Characters |

Computer
Generated
Synthetic
Character

]
|
'
i
]
'
)
1
)
]
1
'

"Live"
Character
“Live" Character VIRTUAL VIDEO
in Synthetic
Position

Figure 1. Overview of the Virtual Postman virtual video architecture. Video images are segmented into background
and foreground components. Background data is archived so it can be used to replace “dead” foreground objects.
Foreground objects are archived so they can be re-inserted as synthetic objects modified by computer graphics. The
virtual video image is integrated by combining background components, “live” characters, and synthetic characters.

vey of human motion analysis techniques. For this simple
application, it is assumed that vehicles are rigid and move
in straight lines, and humans (or animals) are non-rigid and
move with periodic motion. Thus it is only necessary to
determine the rigidity and periodicity of a character. View
invariant approaches to this problem have been attempted
by image matching[18}[171[19]. Fujiyoshi and Lipton[5]
use image skeletons to determine walking and running of
humans. In this application, rigidity is determined by exam-
ining internal optic flow[16] of a character and periodicity
is determined by an image matching method similar to [18]
as described in section 5. This paper proposes, in section 6,
a periodicity model for a non-rigid object which consists of
an image sequence representing a complete cycle of the ob-
ject’s motion and a displacement sequence representing the
spatial relationship between each image. These periodic se-
quences can then be repeated, scaled, physically moved, or
inverted to simulate the object appearing in any position at
any time.

3  Detection of Moving Objects

Detection of blobs in a video stream is performed by
a process of background subtraction using a dynamically
updated background model[5] from a stable video stream
(either from a static camera, or stabilised by a suitable

Figure 2. Moving blobs are extracted from a video
image.

algorithm[8]) denoted I, (x) where [ is the intensity of pixel
z = (4, 7) at frame n. :

Firstly, each frame is smoothed with a 3 x 3 Gaussian
filter to remove video noise. The background model B, ()
is initialised by setting Bg = Iy. After this, for each frame,
a binary motion mask image M, (z) is generated containing
all moving pixels

— 1, lIn(m) _Bn—l(x)l >T
Mn(z)—{ 0, Mn(z) = Ba-1(z)| T

Where T is an appropriate threshold. After this, non-
moving pixels are updated using an IIR filter to reflect
changes in the scene (such as illumination — making the
method appropriate to both indoor and outdoor settings)

Ba(z) = Bn_i(z), M, (z)=1
" al,(z) + (1 — @)Ba-1(z), Mu(z) =0
2
where « is the filter’s time constant parameter. Moving pix-
els are aggregated using a connected component approach

(D




so that individual blobs can be extracted. An example of
these extracted blobs is shown in figure 2. Two things about
this method of motion detection are relevant to the Virtual
Postman application. The dynamic background model con-
tains the most recent background image information for ev-
ery pixel — even the ones currently occluded! Also, the
moving objects extracted are complete. They contain no
background pixels and no holes, so they are ideal templates
to be removed and reinserted into the virtual video stream.
Consequently, removing characters from the video stream
is easily achieved by simply replacing their pixels with the
corresponding background pixels from B,,.

4 Tracking Targets

Target template

Motion regions

Figure 3. The tracking process. Moving objects are
detected in each video frame. Individual objects are
tracked by visual template correlation matching.

Tracking of objects is performed using the technique[15]
as shown in figure 3. Extracted blobs are tracked from frame
to frame by visual template correlation matching. However,
the template matching is only applied in regions where mo-
tion is detected, to reduce the computational load and in-
crease the method’s overall reliability.

Consider a blob Q,, detected in frame I,, which needs to
be tracked to frame I, 1. In frame, I,,;,, there are several
blobs wk , which could be a new instance of ,. Q, is
convolved with each of wk 41 in turn to determine both the
best match, and the new location, or displacement, of Q.

First, a rectangular windowing function W (z) of size
(W;, W;) is defined which is just large enough to enclose
Q. Each element of W (z) is based on whether the indi-
vidual pixel z is moving. That is W (z) = M, (z) within
(Wi, W;). The convolution D* takes the form

i=W,; j=W; . .
' W (&, ) In (% 5) = Tnga((3,5) + d)]
(z;d
=2 2 Wl
(3)
where ||W (z)|| is a normalisation constant given by
i=W,; j=W;j
w@)ll=>" > w(,j) )
i=1 j=1

and d is a displacement. The values of d are chosen to over-
lap Q, with the set of pixelsinwf ;.

Resiual o fr Non-Rid Body

| Residual Flow for Rigid Body

Rigidity

Average Residual Flow
PR ot s e

SN S,

70
Frame Number

Figure 4. (a) The residual flow computed for two
characters. Also, a flow-based clustering is shown.
Clearly, arms and legs are apparent in the human
clustering whereas only one significant cluster is vis-
ible for the vehicle. (b) The rigidity measure Tg
calculated over time. Clearly the human displays a
higher average residual flow and is thus less rigid.
The rigidity measure also exhibits the periodic nature
that would be expected for a human moving with a
constant gait.

The values of k and d are found to globally minimise
{D*(;d)}

o . — : ke
{kmin; dmin} = {I?L%{D (z;d)} (5)

From these values, the appearance of 2,41 in I, 41 is taken
as wﬁi‘l” and its pixel displacement (or velocity if frame rate
&t is known) is taken as

dpin = ’(7(.’8)5t 6)
5 Character Rigidity

Rigidity of a character is determined by its optical resid-
ual flow as defined in [16]. A local optic flow computation
is applied to a tracked character using a method similar to
Anandan’s[2] to produce a flow field #(z) for the pixels in
that character. The residual flow vg is a measure of the




Previous Templates

Most Recent
Template

Template Match Sequence

Best nfnatch

3 E)
Template

A543 00 AAAAAAAALLLSIDEEAAAA

PERIODIC SEQUENCE

Figure 5. Determining periodicity. The most recent template Q. is matched with previous templates and the correlation
values Cy(y) are stored. The template which minimises Cy(y) marks the beginning of a periodic sequence

amount of internal visual motion within the character. In
this case, Ty is taken as the standard deviation of the flow
vectors computed:

YR o

where p is the number of pixels in the character’s image
(= ||W (=)|| from section 4). Figure 4(a) shows the residual
flow field #(z) and a simple clustering based on #(z) for
two characters. The results of the residual flow computation
are shown in figure 4(b). Clearly, this measure can be used
to distinguish rigid from non-rigid objects.

6 Determining a Periodic Sequence

Determining periodicity is important for generating syn-
thetic characters based on video imagery. If periodic mo-
tion is assumed, it becomes possible to extract a periodic
sequence P(k) = {S,dx} which represents the charac-
ter exhibiting one cycle of motion over a set of frames
k € [Po, Pn]. The sequence consists of both the visual
appearance (2 of the character at each frame and the frame-
to-frame velocity d as well. This sequence can then be re-
peated, scaled, inverted, or physically moved in the image,
creating a realistic synthetic character. For arigid character
(such as a vehicle), the periodic sequence may contain only
one element — a good view of the object g, and its pixel
velocity dp.

Periodicity is determined by a method similar to that dis-
cussed in [18]. For each instance of a character detected in
the video stream a visual template is collected. The result
is a list of templates € - --2,,. To determine periodicity,
each template € is matched (by equation 3) to all of the
previous templates Q - - - Qy, - - - Q. _1. For each match, the

minimum of the convolution DY (z; d) is collected as a se-
quence Ci(y) = min D} (z; d).

The template Qy which is closest in appearance to 2,
will have the lowest value of Ci(Y) and is selected as the
“starting” point for the periodic sequence Py = Y and
Py = k — 1 is taken as the “end” point. Each element of
the periodic sequence P(y) contains both the template €2,
and the corresponding frame to frame pixel velocity dy; | as
computed by equation 6 of section 4. This captures both the
visual and temporal components of one cycle of the charac-
ter’s motion. Figure 5 shows the determination of a periodic
sequence for a non-rigid character.

7 Synthesising Characters

There are situations in which it is necessary to insert syn-
thetic characters into the virtual video stream. These may
need to represent: real “live” characters if, for example, a
“live” character is being occluded in the video stream by a
“dead” one; video-derived characters at fictitious locations
or times if, for example, a “dead” character is brought back
to life as a zombie; completely synthetic computer gener-
ated characters; or even a combination — a computer en-
hanced video-derived character.

Generating zombie characters from stored periodic se-
quences P(k)(= {Q%, di}) is fairly straightforward. These
zombies can be made to move at arbitrary speeds and appear
at arbitrary places or scales within the virtual video image.
They can even be made to move in the opposite direction
from the source character. They are inserted by selecting a
starting frame I, and position in the virtual video image
xo. The periodic sequence can be scaled in size by a factor
K and in time by a factor 7. If necessary, a flip operator
F(2) can be applied to the images to make them move in
the reverse direction. Then, at each subsequent frame I,,,




Figure 6. Creating a synthetic character. The image sequences on the left are the originals. In both cases, the front-
most character has been “killed” and a synthetic image sequence of the occluded character is generated based on its
periodic sequence. These synthetic sequences are shown on the right.

the position of the object is given as

Ep =Cp_1+ T X d[(n—l)mOdPN] ®)
where Py is the size of P(k). And the appearance of the

objectis K x Q[andPN] or K x F(Q[nmode])-

7.1 Synthesising Occluded Characters

A special case of a synthetic character is needed when a
“live” character is occluded by a “dead” one. In this case
it is necessary to determine the frame in which the occlu-
sion is about to occur and then create a periodic sequence
for that character at that time. Once this is done, a synthetic
character with scale factors T'= K = 1 can be added to the
virtual video stream for as long as the occlusion lasts. De-
termining occlusion is done using the pixel contention tech-
nique described in [16]. Figure 6 shows the results when a
synthetic character is used to replace a real one which has
been occluded.

8 Discussion and Conclusion

With the advent of advanced video understanding and
real-time processing capabilities, the concept of virtual
video is ripe for exploitation. The ability to interactively
remove or insert characters from video streams has many
applications in the entertainment industry, video conferenc-
ing, and virtual and augmented reality — just to name a few.
Presented in this paper is an example application which

shows how straightforward computer vision techniques can
be married with computer graphics to create such an inter-
active video system.

Figure 7 shows some of the virtual video images gener-
ated by Virtual Postman in real-time running on an SGI O2
platform. The Virtual Postman game demonstrates some
key ideas about virtual video. Adaptive, dynamic back-
ground subtraction provides an excellent method for ex-
tracting complete characters from a video stream, and pro-
ducing a character-free background model which makes ob-
ject removal an almost trivial task. Being able to track
objects through video streams provides data by which ob-
jects can be analysed for rigidity and their periodicity de-
termined. Using periodic sequences of templates and ve-
locities allows cyclic motion to be captured and then re-
played synthetically in arbitrary places and at arbitrary
times. Putting these techniques together allows a player to
interactively augment a video stream using data supplied
exclusively from that stream.

References

[1]1 S. Adams. The Joy of Work : Dilbert’s Guide to Finding
Happiness at the Expense of Your Co-Workers. Harper-
Collins, 1998.

[2] P. Anandan. A computational framework and an algorithm
for the measurement of visual motion. International Journal
of Computer Vision, 2:283-310, 1989.

[3] C. Brown and R. Nelson. Image understanding research at
rochester. In Proceedings of DARPA Image Understanding
Workshop, volume 1, pages 69-75, 1997.




(a) The car goes BOOM!!

RAW VIRTUAL VIDEO

(b) Nothing left but a puddle of pixels

RAW VIRTUAL VIDEO

(c) Invasion of the giant zombies

) A\
RAW VIRTUAL VIDEO

{(d) Cloning is all the rage this year

RAW VIRTUAL VIDEO

Figure 7. Examples of virtual video images from Virtual Postman. (a) A car is “killed”. The car is removed from

the image and replaced by a computer graphic explosion. (b) Two characters are “killed”, removed and replaced by
puddles of pixels. (c) The same two characters of (b) come back later as giant zombies (at a spatial scale of K = 1.3)
to terrorise a “real” car. (d) A “live” character is cloned as a zombie.

[4] P. Burt, J. Bergen, R. Hingorani, R. Kolczynski, W. Lee,
A. Leung, J. Lubin, and H. Shvaytser. Object tracking with
amoving camera: An application of dynamic motion analys.
In IEEE Workshop on Motion, 1989.

[5]1 H. Fujiyoshi and A. Lipton. Real-time human motion anal-
ysis by image skeletonization. In Proceedings of IEEE
WACV98, pages 15-21, 1998.

[6] D. Gavrila. The visual analysis of human movement: a sur-
vey. Computer Vision and Image Understanding, 73(1):82—
98, 1999.

[7]1 E. Grimson, C. Stauffer, R. Romano, L. Lee, P. Viola, and
O. Faugeras. A forest of sensors: Using adaptive tracking
to classify and monitor activities in a site. In Proceedings of
DARPA Image Understanding Workshop, volume 1, pages
33-41, November 1998.

[8] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and
P. Burt. Real-time scene stabilization and mosaic construc-
tion. In Proceedings of DARPA Image Understanding Work-
shopp, 1994.

[9] I Haritaoglu, L. S. Davis, and D. Harwood. w? who? when?
where? what? a real time system for detecing and tracking
people. In FGR98 (submitted), 1998.

[10] M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. In Proceedings of European
Conference on Computer Vision 96, pages 343-356, 1996.

{111 A. M. Jazwinsky. Stochastic Processes and Filtering The-
ory. Academic Press, NY, 1970.

[12] T. Kanade, R. Collins, A. Lipton, P. Anandan, and P. Burt.
Cooperative multisensor video surveillance. In Proceedings
of DARPA Image Understanding Workshop, volume 1, pages
3-10, May 1997.

[13] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson.
Advances in cooperative multisensor video surveillance. In

Proceedings of DARPA Image Understanding Workshop,
volume 1, pages 3—24, November 1998.

[14] D. Koller, K. Daniilidis, and H. Nagel. Model-based ob-
ject tracking in monocular image sequences of road traf-
fic scenes. International Journal of Computer Vision,
10(3):257-281, 1993.

[15] A. Lipton, H. Fujiyoshi, and R. S. Patil. Moving target de-
tection and classification from real-time video. In Proceed-
ings of IEEE WACV98, pages 8-14, 1998.

[16] A.J.Lipton. Local application of optic flow to analyse rigid
versus non-rigid motion. In Submitted to International Con-
ference on Computer Vision, September 1999.

[17] S.M. Seitz and C. R. Dyer. View-invariant analysis of cyclic
motion. International Journal of Computer Vision, 25(3):1-
23, 1997.

[18] A. Selinger and L. Wixson. Classifying moving objects as
rigid or non-rigid without correspondences. In Proceedings
of DARPA Image Understanding Workshop, volume 1, pages
341-358, November 1998.

[19] P. Tsai, M. Shah, K. Ketter, and T. Kasparis. Cyclic motion
detection for motion based recognition. Pattern Recognition,
27(12):1591-1603, 1994.

[20] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780-785, 1997.




